Deakin University
Browse

Robust 2D joint sparse principal component analysis with f-norm minimization for sparse modelling: 2D-RJSPCA

Version 2 2024-06-05, 06:28
Version 1 2019-11-26, 08:54
conference contribution
posted on 2024-06-05, 06:28 authored by Imran Razzak, RA Saris, M Blumenstein, G Xu
© 2018 IEEE. Principal component analysis (PCA) is widely used methods for dimensionality reduction and Lots of variants have been proposed to improve the robustness of algorithm, however, these methods suffer from the fact that PCA is linear combination which makes it difficult to interpret complex nonlinear data, and sensitive to outliers or cannot extract features consistently, i.e., collectively; PCA may still require measuring all input features. 2DPCA based on 1-norm has been recently used for robust dimensionality reduction in the image domain but still sensitive to noise. In this paper, we introduce robust formation of 2DPCA by centering the data using the optimized mean for two-dimensional joint sparse as well as effectively combining the robustness of 2DPCA and the sparsity-inducing lasso regularization. Optimal mean helps to improve the robustness of joint sparse PCA further. The distance in spatial dimension is measure in F-norm and sum of different datapoint uses 1-norm. 2DR-JSPCA imposes joint sparse constraints on its objective function whereas additional plenty term help to deal with outliers efficiently. Both theoretical and empirical results on six publicly available benchmark datasets shows that Optimal mean 2DR-JSPCA provides better performance for dimensionality reduction as compare to non-sparse (2DPCA and 2DPCA-L1) and sparse (SPCA, JSPCA).

History

Volume

2018-July

Location

Rio de Janeiro, Brazil

Start date

2018-07-08

End date

2018-07-13

ISBN-13

9781509060146

Language

eng

Publication classification

E1.1 Full written paper - refereed

Title of proceedings

IJCNN 2018 : International Joint Conference on Neural Networks

Event

Neural Networks. International Joint Conference (2018 : Rio de Janeiro, Brazil)

Publisher

IEEE

Place of publication

Piscataway, N.J.

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC