Deakin University
Browse

File(s) under permanent embargo

SSDPose: A single shot deep pose estimation and analysis

Version 2 2024-06-04, 02:21
Version 1 2020-01-21, 01:55
conference contribution
posted on 2024-06-04, 02:21 authored by A Abobakr, H Abdelkader, J Iskander, D Nahavandi, Khaled Saleh, M Attia, M Hossny, S Nahavandi
© 2019 IEEE. Human posture estimation is a fundamental challenge in computer vision research. This is a task that has received substantial interest due to the importance of evaluating the human performance in several disciplines. The ultimate goal for the vision-based pose estimation task is the markerless accurate prediction of necessary postural information. This paper proposes a single shot deep human posture detection and estimation network. The proposed SSDPose architecture increments standard object detection networks to feature posture estimation. SSDPose is an end-to-end trainable model that detects and estimates the body posture from a single image. Further, our network has been trained to predict joint angles which are essential information for several domains such as biomechanic and ergonomic posture analysis. The reference joint angles have been generated using motion capture sequences and a novel inverse kinematics method. Experimental results demonstrate that SSDPose effectively detects and estimates the posture by achieving person mean average precision (mAP) of 98.2%, an average joint angles MAE of 3. 16 pm 1.23 deg and an RMSE of 4. 22 pm 1.73 deg at up to 30 FPS.

History

Pagination

1862-1868

Location

Bari, Italy

Start date

2019-10-06

End date

2019-10-09

ISSN

1062-922X

ISBN-13

9781728145693

Language

eng

Publication classification

E1 Full written paper - refereed

Title of proceedings

SMC 2019 : Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics

Event

Systems, Man and Cybernetics. Conference (2019 : Bari, Italy)

Publisher

IEEE

Place of publication

Piscataway, N.J.