Semantic entity identification in large scale data via statistical features and DT-SVM
conference contribution
posted on 2013-11-18, 00:00authored byD Wang, Xiao LiuXiao Liu, H Luo, J Fan
Semantic entities carry the most important semantics of text data. However, traditional approaches such as named entity recognition and new word identification may only detect some specific types of entities. In addition, they generally adopt sequence annotation algorithms such as Hidden Markov Model (HMM) and Conditional Random Field (CRF) which can only utilize limited context information. As a result, they are inefficient on the extraction of semantic entities that were never shown in the training data. In this paper we propose a strategy to extract unknown text semantic entities by integrating statistical features, Decision Tree (DT), and Support Vector Machine (SVM) algorithms. With the proposed statistical features and novel classification approach, our strategy can detect more semantic entities than traditional approaches such as CRF and Bootstrapping-SVM methods. It is very sensitive to new entities that just appear in fresh data. Our experimental results have shown that the precision, recall rate and F-One rate of our strategy are about 23.6%, 21.5% and 25.8% higher than that of the representative approaches on average.