Deakin University
Browse

File(s) under permanent embargo

Semi-supervised image labelling using barycentric graph embeddings

conference contribution
posted on 2016-01-01, 00:00 authored by Antonio Robles-KellyAntonio Robles-Kelly, Ran Wei
Here, we turn our attention to barycentric embeddings and examine their utility for semi-supervised image labelling tasks. To this end, we view the pixels in the image as vertices in a graph and their pairwise affinities as weights of the edges between them. Abstracted in this manner, we can pose the semi-supervised labelling problem into a graph theoretic setting where the labels are assigned based upon the distance in the embedding space between the nodes corresponding to the unlabelled pixels and those whose labels are in hand. We do this using a barycentric embedding approach which naturally leads to a setting in which the embedding coordinates can be computed by solving a system of linear equations. Moreover, the method presented here can incorporate side information such as that delivered by colour priors used elsewhere in the literature for semi-supervised colour image labelling. We illustrate the utility of our method for colour image labelling and material classification on hyperspectal images. We also compare our results against other techniques elsewhere in literature.

History

Pagination

1518-1523

Location

Cancun, Mexico

Start date

2016-12-04

End date

2016-12-08

ISBN-13

978-1-5090-4847-2

Language

eng

Publication classification

E1.1 Full written paper - refereed

Copyright notice

2016, IEEE

Editor/Contributor(s)

[Unknown]

Title of proceedings

ICPR : Proceedings of the 2016 23rd International Conference on Pattern Recognition

Event

International Association for Pattern Recognition. Conference (23rd : 2016 : Cancun, Mexico)

Publisher

Institute of Electrical and Electronics Engineers

Place of publication

Piscataway, N.J.

Series

International Association for Pattern Recognition Conference

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC