Spatial activity recognition is challenging due to the amount of noise incorporated during video tracking in everyday environments. We address the spatial recognition problem with a biologically-inspired chemotactic model that is capable of handling noisy data. The model is based on bacterial chemotaxis, a process that allows bacteria to change motile behaviour in relation to environmental gradients. Through adoption of chemotactic principles, we propose the chemotactic model and evaluate its performance in a smart house environment. The model exhibits greater than 99% recognition performance with a diverse six class dataset and outperforms the Hidden Markov Model (HMM). The approach also maintains high accuracy (90-99%) with small training sets of one to five sequences. Importantly, unlike other low-level spatial activity recognition models, we show that the chemotactic model is capable of recognising simple interwoven activities.
History
Pagination
301 - 306
Location
Melbourne, Vic.
Open access
Yes
Start date
2005-12-05
End date
2005-12-08
ISBN-13
9780780393998
ISBN-10
0780393996
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Publication classification
E1.1 Full written paper - refereed
Copyright notice
2005, IEEE
Editor/Contributor(s)
M Palaniswami
Title of proceedings
Proceedings of the 2005 intelligent sensors, sensor networks and information processing conference