An intelligent agent-based scheduling system, consisting of a reinforcement learning agent and a simulation model has been developed and tested on a classic scheduling problem. The production facility studied is a multiproduct serial line subject to stochastic failure. The agent goal is to minimise total production costs, through selection of job sequence and batch size. To explore state space the agent used reinforcement learning. By applying an independent inventory control policy for each product, the agent successfully identified optimal operating policies for a real production facility. <br>
History
Location
Bangkok, Thailand
Open access
Yes
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.