Deakin University
cahill-uvinducesresistance-2006.pdf (39.3 kB)

UV induces resistance in Arabidopsis Thaliana to the Oomycete Pathogen Hyaloperonospora Parasitica

Download (39.3 kB)
conference contribution
posted on 2006-01-01, 00:00 authored by David CahillDavid Cahill, Bernard Kunz, Paige Dando, Desma Grice, B Wade, K McKenzie
Owing to their sessile nature, plants have evolved mechanisms to minimise the damaging effects of abiotic and biotic stresses. Attack by pathogenic fungi, viruses and bacterium is a major type of biotic stress. To resist infection, plants recognise invading pathogens and induce disease resistance through multiple signal transduction pathways. In addition, appropriate stimulation can cause plants to increase their resistance to future pathogen attack. We have found that exposure to non-lethal doses of UV-C (254 nm) renders a normally susceptible ecotype of Arabidopsis thaliana resistant to the biotrophic Oomycete pathogen Hyaloperonospora parasitica. The UV treatment induces an incompatible response in a dose-dependent fashion, and is still effective upon pathogen inoculation up to seven days after UV exposure. The degree of resistance diminishes with time but higher doses result in greater levels of resistance, even after seven days. Furthermore, the effect is systemic, occurring in parts of the plant that have not been irradiated. Incubation in the dark post?irradiation and prior to infection reduces the UV dose required to generate a specific level of pathogen resistance without affecting the duration of resistance. These observations, plus the inability of plants to photoreactivate UV photoproducts in the dark, strongly suggest that DNA damage induces the resistance phenotype. Currently, we are assessing the influence of DNA repair defects on UV-induced resistance, following the expression of a number of defence?related genes post-UV-C irradiation, and assessing the effect of UV in plant mutants deficient in specific signalling molecules involved in resistance.



52 - 52


Brisbane, Qld.

Open access

  • Yes

Start date


End date





Reproduced with the kind permission of the copyright owner.

Publication classification

E3 Extract of paper

Copyright notice

2006, Australian Society for Biochemistry and Molecular Biology

Title of proceedings

ComBio 2006 : Proceedings of the Australian Society for Biochemistry and Molecular Biology Combined Conference

Usage metrics

    Research Publications


    No categories selected



    Ref. manager