Utility of real-time decision-making in commercial data stream mining domains
conference contribution
posted on 2008-01-01, 00:00authored byC Phua, V Lee, K Smith-Miles
The objective is to measure utility of real-time commercial decision making. It is important due to a higher possibility of mistakes in real-time decisions, problems with recording actual occurrences, and significant costs associated with predictions produced by algorithms. The first contribution is to use overall utility and represent individual utility with a monetary value instead of a prediction. The second is to calculate the benefit from predictions using the utility-based decision threshold. The third is to incorporate cost of predictions. For experiments, overall utility is used to evaluate communal and spike detection, and their adaptive versions. The overall utility results show that with fewer alerts, communal detection is better than spike detection. With more alerts, adaptive communal and spike detection are better than their static versions. To maximise overall utility with all algorithms, only 1% to 4% in the highest predictions should be alerts.
History
Event
IEEE International Conference on Service Systems and Service Management (2008 : Melbourne, Vic.)
ICSSSM 2008 : Exploring service dynamics with science and innovative technology : Proceedings of the 2008 International Conference on Service Systems and Service Management