Deakin University
Browse

Visualizing association rules for feedback within the legal system

conference contribution
posted on 2003-12-01, 00:00 authored by S Ivkovic, John YearwoodJohn Yearwood, A Stranieri
Knowledge discovery from databases (KDD) exercises in law have typically attempted to derive knowledge about decision making processes in the legal domain automatically from datasets. This is made difficult in that real data that represents aspects of a decision process in law is commonly stored as text and rarely stored in structured databases. The central claim advanced here is that KDD processes can be usefully applied to existing datasets of client and demographic data in order to provide feedback for the effective operation of organizations within the legal system. However, the cost of data mining suites and the scarcity of specialized personnel for these tools mitigates against their use. In this study data mining with Association Rules (AR) has been performed on a data-set of over 380,000 records from a legal aid agency. Methods to visualise patterns in order to suggest and test plausible hypotheses from the data have been developed. The tool, called WebAssociate is entirely web based. Domain experts using the tool report favorable responses.

History

Pagination

214-223

Location

Edinburgh, Scotland

Start date

2003-06-24

End date

2003-06-28

ISBN-10

1581137478

Publication classification

EN.1 Other conference paper

Title of proceedings

Proceedings of the International Conference on Artificial Intelligence and Law

Publisher

ACM

Place of publication

New York, N.Y.

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC