posted on 2011-01-01, 00:00authored byHong Wang, J Ding, Xungai Wang, Tong Lin
Recently, novel properties have been observed when superhydrophobic and superhydrophilic surfaces are combined. For example, the Stenocara beetle, an insect in the Namib Desert, has an incredible ability to capture fresh water from air for its survival in the dry desert environment [1]. Such a feature derives from its special wing that has a hydrophilic-patterned superhydrophobic surface. Materials having a similar surface feature also exhibited a similar water-harvesting function [2]. A spider silk has been reported to show a periodic alternation of hydrophobic and hydrophilic surfaces along the fiberlength direction [3], which can quickly collect water from air. It was also observed that water droplets moved in one direction along a superhydrophobic-to-superhydrophilic gradient surface [4]. However, all these works are based on two dimension surfaces. The work on water transfer through porous media induced by a gradient wettability change has received little attention until very recently [5]. In this study, we have developed a simple, but very effective and versatile, method to produce wettability gradient across the thickness of fabrics, and demonstrated that the fabrics have the ability to spontaneously transfer water unidirectionally through the fibrous architecture. A plain weave polyester fabric was mainly used as a sample material.
History
Pagination
140 - 141
Location
Charleston, S. C.
Open access
Yes
Start date
2011-10-11
End date
2011-10-13
Language
eng
Publication classification
E2 Full written paper - non-refereed / Abstract reviewed
Copyright notice
2011, The Authors
Title of proceedings
Proceedings of the 2011 International Symposium on New Frontiers in Fiber Materials Science