Silk cocoons are biological composites with intriguing characteristics that have evolved through a long natural selection process. Knowledge of structure-property-function relationship of multilayered composite silk cocoon shells gives insight into the design of next-generation protection materials. The current investigation studied the composite structure and mechanical performance of a wild silkworm cocoon (Chinese tussah silkworm cocoon, Antheraea pernyi) in comparison with the domestic counterpart (Mulberry silkworm cocoon, Bombyx mori). 180º peel and tensile tests were performed on the cocoon walls to understand both their interlaminar and in-plane mechanical properties. The fracture surfaces were investigated under SEM. The wild cocoon showed substantially higher toughness over the domestic cocoon, which explains their unique capability to tackle severe environmental adversaries.