File(s) under permanent embargo
Wind farm power uncertainty quantification using a mean-variance estimation method
conference contribution
posted on 2012-01-01, 00:00 authored by Abbas KhosraviAbbas Khosravi, Saeid Nahavandi, Douglas CreightonDouglas Creighton, J JaafarThis paper proposes an innovative optimized parametric method for construction of prediction intervals (PIs) for uncertainty quantification. The mean-variance estimation (MVE) method employs two separate neural network (NN) models to estimate the mean and variance of targets. A new training method is developed in this study that adjusts parameters of NN models through minimization of a PI-based cost functions. A simulated annealing method is applied for minimization of the nonlinear non-differentiable cost function. The performance of the proposed method for PI construction is examined using monthly data sets taken from a wind farm in Australia. PIs for the wind farm power generation are constructed with five confidence levels between 50% and 90%. Demonstrated results indicate that valid PIs constructed using the optimized MVE method have a quality much better than the traditional MVE-based PIs.