Deakin University
Browse

A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem

Version 2 2024-06-03, 00:11
Version 1 2023-08-25, 02:53
conference contribution
posted on 2024-06-03, 00:11 authored by Sergey PolyakovskiySergey Polyakovskiy, PJ Stuckey
The guillotine rectangular cutting problem deals with a single rectangular plate of raw material and a collection of rectangular items to be cut from the plate. Each item is associated with a profit and a demand. The problem searches for a feasible layout of a subset of items on the plate so as to maximize the total profit of selected items. The guillotine constraint restricts feasible layouts to those that can be obtained via guillotine edge-to-edge cuts that run parallel to an edge of the plate. We propose a novel constraint programming model that is suitable for guillotine cutting with an arbitrary number of stages of alternating horizontal and vertical guillotine cuts. This is an assignment-based model that models guillotine cuts using a constant number of rectangular regions, with some regions allocated to items. It treats the entire plate as a primary region and decides on the guillotine cuts required to split the regions recursively till they produce space for the items. To speed the search, the model explores the strength of cumulative scheduling relaxations of the cutting problem. Our model is a successful alternative to more traditional mixed-integer linear programming (MILP) models. It outperforms a number of state-of-the-art MILPs on a set of small and moderate size benchmark instances and proves optimality for several instances that remain challenging for these MILPs.

History

Journal

Proceedings of the International Conference on Automated Planning and Scheduling

Volume

33

Pagination

352-360

Location

Prague, Czech Republic

Start date

2023-07-08

End date

2023-07-13

ISSN

2334-0835

eISSN

2334-0843

ISBN-13

9781577358817

ISBN-10

1577358813

Language

eng

Publication classification

E1 Full written paper - refereed

Title of proceedings

ICAPS 2023 : Proceedings of the International Conference on Automated Planning and Scheduling

Event

Automated Planning and Scheduling. Conference (2023 : Prague, Czech Republic)

Issue

1

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Place of publication

Palo Alto, Calif.

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC