File(s) under embargo
A Deep Learning Approach for Active S-Box Prediction of Lightweight Generalized Feistel Block Ciphers
Version 2 2024-05-31, 00:16Version 2 2024-05-31, 00:16
Version 1 2023-11-17, 04:11Version 1 2023-11-17, 04:11
journal contribution
posted on 2024-05-31, 00:16 authored by MF Idris, Je Sen TehJe Sen Teh, JLS Yan, WZ YeohA Deep Learning Approach for Active S-Box Prediction of Lightweight Generalized Feistel Block Ciphers
History
Journal
IEEE AccessVolume
9Pagination
104205-104216Location
Piscataway, N.J.Publisher DOI
ISSN
2169-3536eISSN
2169-3536Language
EnglishPublication classification
C1.1 Refereed article in a scholarly journalPublisher
IEEEUsage metrics
Keywords
Active S-boxesblock cipherCiphersComputer ScienceComputer Science, Information SystemscryptanalysisCRYPTANALYSISData modelsdeep learningDeep learningdifferential cryptanalysisEncryptionEngineeringEngineering, Electrical & Electroniclightweight cryptographyneural networksScience & TechnologySecurityTask analysisTechnologyTelecommunicationsTrainingTWINE
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC