File(s) under permanent embargo
A Deterioration Model for Sewer Pipes Using CCTV and Artificial Intelligence
journal contribution
posted on 2023-05-29, 04:34 authored by C Salihu, SR Mohandes, AF Kineber, M. Reza HosseiniM. Reza Hosseini, F Elghaish, T ZayedSewer pipeline failures pose significant threats to the environment and public health. To tackle these repercussions, many deterioration models have been developed to predict the conditions of sewer pipes, most of which are based on CCTV inspection reports. However, these reports are prone to errors due to their subjective nature and human involvement. More importantly, there are insufficient data to develop prudent deterioration models. To address these shortcomings, this paper aims to develop a CCTV-based deterioration model for sewer pipes using Artificial Intelligence (AI). The AI-based model relies on the integration of an unsupervised, multilinear regression technique and Weibull analysis. Findings derived from the Weibull deterioration curve indicate that the useful service life for concrete and vitrified clay pipes are 79 years and 48 years, respectively. The regression models show that the R2 value for vitrified clay sewer pipes, concrete sewer pipes, and ductile iron sewer pipes are 71.18%, 71.47%, and 81.51%, respectively, and 73.69% for concrete stormwater pipes. To illustrate the impact of various factors on sewer pipes, sensitivity analyses under different scenarios are conducted. These analyses indicate that pipe diameter has a significant influence on sewer pipe deterioration, with little impact on stormwater pipes. These findings would guide decision makers in identifying critical pipes and taking necessary precautionary measures. Further, this provides a sound basis for prioritizing maintenance actions, which would pave the way for designing sustainable urban drainage systems for cities.
History
Journal
BuildingsVolume
13Article number
ARTN 952Location
Basel, SwitzerlandPublisher DOI
ISSN
2075-5309eISSN
2075-5309Language
EnglishPublication classification
C1 Refereed article in a scholarly journalIssue
4Publisher
MDPIUsage metrics
Categories
Keywords
Science & TechnologyTechnologyConstruction & Building TechnologyEngineering, CivilEngineeringmachine learningdeterioration modelsmaintenanceartificial intelligencerobot-based inspection techniquesSTRUCTURAL DETERIORATIONNEURAL-NETWORKSDRAINAGE PIPESINFRASTRUCTURECLASSIFICATIONMANAGEMENTSYSTEMSSTATEBuilding not elsewhere classifiedArchitecture not elsewhere classifiedDesign Practice and Management not elsewhere classified