Deakin University
Browse

File(s) under permanent embargo

A Flexible and Weavable Lignocellulose-Based Photocatalyst Supported by Natural Three-Dimensional Porous Juncus effusus for Highly Efficient Degradation of Environmental Contaminants

Version 2 2024-06-05, 04:32
Version 1 2022-06-28, 22:01
journal contribution
posted on 2024-06-05, 04:32 authored by S Zhou, C Zhang, L Xia, Z Fu, N Zhu, J Gong, X Wang, P Lyu, L Li, W Xu
Lignocellulosic biomass is a potential biotemplate for disposing the burden of the uncontrollable accumulation of environmental contaminants disrupting the hydrophytic ecosystems. Herein, an efficient solar-driven catalyst was prepared using a natural three-dimensional (3D) porous lignocellulose-based Juncus effusus (JE) fiber for wastewater treatment. Owing to the exquisite 3D microstructure and abundant hydroxyl groups, the two-dimensional lamellar graphitic carbon nitride/graphene oxide (g-C3N4/GO) nanocomposites were successfully synthesized and decorated on the carboxymethylated JE fiber via the electrostatic self-assembly method. The as-prepared g-C3N4/GO-JE (CNG-JE) photocatalyst exhibits excellent light absorption efficiency and a superior ability to accelerate photogenerated electron migration. The outstanding adsorption performance toward pollutants also contributes to the photodegradation property of CNG-JE, showing highly efficient degradation of C.I. Reactive Red 120 (99.8%), C.I. Acid Yellow 11 (99.8%), methylene blue (99.4%), Cr(VI) (98.8%), and tetracycline (87.2%). Most importantly, the lignocellulose-based CNG-JE fibers could be fabricated into a photocatalyst textile due to their flexible and weavable properties. In actual application, the CNG-JE textile can be reused for at least five cycles under the sun, demonstrating that the flexible CNG-JE textile is practical and recyclable. This study may provide a platform for constructing efficient, flexible, and weavable biomass-based porous materials for cost-effective and sustainable catalytic applications.

History

Journal

ACS Applied Materials and Interfaces

Volume

14

Pagination

27955-27967

Location

Washington, D.C.

ISSN

1944-8244

eISSN

1944-8252

Publication classification

C1 Refereed article in a scholarly journal

Issue

24

Publisher

American Chemical Society (ACS)

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC