A Hybrid Latent Space Data Fusion Method for Multimodal Emotion Recognition
journal contribution
posted on 2024-07-02, 06:19 authored by S Nemati, R Rohani, ME Basiri, M Abdar, NY Yen, V Makarenkov© 2013 IEEE. Multimodal emotion recognition is an emerging interdisciplinary field of research in the area of affective computing and sentiment analysis. It aims at exploiting the information carried by signals of different nature to make emotion recognition systems more accurate. This is achieved by employing a powerful multimodal fusion method. In this study, a hybrid multimodal data fusion method is proposed in which the audio and visual modalities are fused using a latent space linear map and then, their projected features into the cross-modal space are fused with the textual modality using a Dempster-Shafer (DS) theory-based evidential fusion method. The evaluation of the proposed method on the videos of the DEAP dataset shows its superiority over both decision-level and non-latent space fusion methods. Furthermore, the results reveal that employing Marginal Fisher Analysis (MFA) for feature-level audio-visual fusion results in higher improvement in comparison to cross-modal factor analysis (CFA) and canonical correlation analysis (CCA). Also, the implementation results show that exploiting textual users' comments with the audiovisual content of movies improves the performance of the system.
History
Journal
IEEE AccessVolume
7Pagination
172948-172964Location
Piscataway, N.J.Publisher DOI
Open access
- Yes
Link to full text
ISSN
2169-3536eISSN
2169-3536Language
engPublication classification
C1 Refereed article in a scholarly journalPublisher
IEEEPublication URL
Usage metrics
Categories
No categories selectedKeywords
Affective computingemotion recognitionlatent space modelmultimodal fusionScience & TechnologyTechnologyComputer Science, Information SystemsEngineering, Electrical & ElectronicTelecommunicationsComputer ScienceEngineeringMARGINAL FISHER ANALYSISSENTIMENT ANALYSISVIDEOAUDIOEEGREPRESENTATIONEXTRACTIONFRAMEWORKFEATURES4602 Artificial intelligence4605 Data management and data science
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC