Deakin University
Browse

File(s) not publicly available

A comprehensive chemical model for the preliminary steps of the thermal stabilization process in a carbon fibre manufacturing line

journal contribution
posted on 2018-12-01, 00:00 authored by K Badii, G Golkarnarenji, A S Milani, Minoo NaebeMinoo Naebe, H Khayyam
The thermal stabilisation process of the carbon fibre production line, as an energy consuming oxidation reaction, is diffusion limited. Therefore the kinetic parameters, estimated from traditional methods, cannot be applied due to the significance of oxygen diffusivity. Moreover, this process involves multiple chemical reaction systems, which are interconnected and often too complex to explain via analytical frameworks. One common solution to comprehend such a process and optimise its parameters is mathematical deterministic models. In the present study, a comprehensive deterministic model was developed to predict the kinetic parameters with a finite number of experiments by an optimisation algorithm. Then the model was used to study the progress of the process, particularly in the first steps of the process to explain the decrement of CO bonds in the oxidised fibre by adding a reduction step to the stabilisation mechanism and considering the role of oxygen as a catalyst in cyclisation. The developed model is based on the structure of the PAN precursor, fibre tow and governing differential equations for the underlying phenomena, including chemical kinetics and mass transfer, associated with empirical relations for oxygen diffusivity and physical properties under isothermal conditions. The results presented up to 95% improvement in outcomes of the model for a pilot carbon fibre production line.

History

Journal

Reaction chemistry and engineering

Volume

3

Issue

6

Pagination

959 - 971

Publisher

Royal Society of Chemistry

Location

Cambridge, Eng.

eISSN

2058-9883

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2018, Royal Society of Chemistry