File(s) under permanent embargo

A critical role for the short intracellular C terminus in receptor activity-modifying protein function

journal contribution
posted on 2006-11-01, 00:00 authored by M Udawela, G Christopoulos, M Morfis, A Christopoulos, Siying Ye, N Tilakaratne, P Sexton
Receptor activity-modifying proteins (RAMPs) interact with and modify the behavior of the calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR). We have examined the contribution of the short intracellular C terminus, using constructs that delete the last eight amino acids of each RAMP. C-Terminal deletion of individual RAMPs had little effect on the signaling profile induced when complexed with CLR in COS-7 or human embryonic kidney (HEK)293 cells. Likewise, confocal microscopy revealed each of the mutant RAMPs translocated hemagglutinin-tagged CLR to the cell surface. In contrast, a pronounced effect of RAMP C-terminal truncation was seen for RAMP/CTRa complexes, studied in COS-7 cells, with significant attenuation of amylin receptor phenotype induction that was stronger for RAMP1 and -2 than RAMP3. The loss of amylin binding upon C-terminal deletion could be partially recovered with overexpression of Gαs, suggesting an impact of the RAMP C terminus on coupling of G proteins to the receptor complex. In HEK293 cells the c-Myc-RAMP1 C-terminal deletion mutant showed high receptor-independent cell surface expression; however, this construct showed low cell surface expression when expressed alone in COS-7 cells, indicating interaction of RAMPs with other cellular components via the C terminus. This mutant also had reduced cell surface expression when coexpressed with CTR. Thus, this study reveals important functionality of the RAMP C-terminal domain and identifies key differences in the role of the RAMP C terminus for CTR versus CLR-based receptors.



Molecular pharmacology






1750 - 1760


American Society for Pharmacology and Experimental Therapeutics


Bethesda, Md.







Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2006, The American Society for Pharmacology and Experimental Therapeutics