File(s) under permanent embargo

A feasible IP traceback framework through dynamic deterministic packet marking

journal contribution
posted on 2016-05-01, 00:00 authored by Shui Yu, Wanlei Zhou, S Guo, M Guo
DDoS attack source traceback is an open and challenging problem. Deterministic packet marking (DPM) is a simple and effective traceback mechanism, but the current DPM based traceback schemes are not practical due to their scalability constraint. We noticed a factor that only a limited number of computers and routers are involved in an attack session. Therefore, we only need to mark these involved nodes for traceback purpose, rather than marking every node of the Internet as the existing schemes doing. Based on this finding, we propose a novel marking on demand (MOD) traceback scheme based on the DPM mechanism. In order to traceback to involved attack source, what we need to do is to mark these involved ingress routers using the traditional DPM strategy. Similar to existing schemes, we require participated routers to install a traffic monitor. When a monitor notices a surge of suspicious network flows, it will request a unique mark from a globally shared MOD server, and mark the suspicious flows with the unique marks. At the same time, the MOD server records the information of the marks and their related requesting IP addresses. Once a DDoS attack is confirmed, the victim can obtain the attack sources by requesting the MOD server with the marks extracted from attack packets. Moreover, we use the marking space in a round-robin style, which essentially addresses the scalability problem of the existing DPM based traceback schemes. We establish a mathematical model for the proposed traceback scheme, and thoroughly analyze the system. Theoretical analysis and extensive real-world data experiments demonstrate that the proposed traceback method is feasible and effective.

History

Journal

IEEE transactions on computers

Volume

65

Issue

5

Pagination

1418 - 1427

Publisher

IEEE

Location

Piscataway, N.J.

ISSN

0018-9340

eISSN

1557-9956

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2016, IEEE