A hybrid intelligent system and its application to fault detection and diagnosis
journal contribution
posted on 2006-01-01, 00:00authored byC Teh, Chee Peng Lim
This paper proposes a hybrid system that integrates the SOM (Self Organizing Map) neural network, the kMER (kernel-based Maximum Entropy learning Rule) algorithm and the Probabilistic Neural Network (PNN) for data visualization and classification. The rationales of this hybrid SOM-kMER-PNN model are explained, and the applicability of the proposed model is demonstrated using two benchmark data sets and a real-world application to fault detection and diagnosis. The outcomes show that the hybrid system is able to achieve comparable classification rates when compared to those from a number of existing classifiers and, at the same time, to produce meaningful visualization of the data sets.