Version 2 2024-06-05, 05:27Version 2 2024-06-05, 05:27
Version 1 2017-04-21, 11:04Version 1 2017-04-21, 11:04
journal contribution
posted on 2024-06-05, 05:27authored byC Xu, W Jin, G Zhao, H Tianfield, S Yu, Y Qu
The inflexible management and operation of today's wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications.