A novel strategy to enhance hydrothermal stability of Pd-doped organosilica membrane for hydrogen separation
journal contribution
posted on 2017-11-15, 00:00 authored by J Lei, H Song, Y Wei, Shuaifei ZhaoShuaifei Zhao, H Qi© 2017 Pd-doped organosilica (POS) membranes are calcined in N2 and steam atmospheres for hydrogen separation. Chemical compositions and microstructures of the membranes are characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR) and N2 absorption-desorption measurement. Gas separation performances and hydrothermal stabilities of the membranes are also evaluated and compared. The membrane calcined in steam atmosphere (i.e. POS-S membrane) shows a high H2 permeance (2.5 × 10−7 mol·m−2·s−1·Pa−1) and H2/CO2 permselectivity (9.2, doubles the Knudsen diffusion factor 4.69). Notably, compared with the POS membrane calcined in N2, the POS-S membrane displays more excellent hydrothermal stability throughout a 190-h test, which is superior to most silica-derived membranes reported. The significantly enhanced hydrothermal stability is mainly attributed to the low content of unstable moieties in the POS network after steam calcination. Steam conditions make unstable intermediate Pd oxide transfer into stable PdO and reduce content of inorganic moieties during the calcination, leading to high hydrothermal stability of the membrane. Therefore, calcination in steam atmosphere may offer an effective strategy to develop desirable POS membranes with high separation performances and excellent hydrothermal stabilities for practical hydrogen separation.
History
Journal
Microporous and Mesoporous MaterialsVolume
253Pagination
55-63Location
Amsterdam, The NetherlandsPublisher DOI
ISSN
1387-1811Language
engPublication classification
C1 Refereed article in a scholarly journalPublisher
ElsevierUsage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC