Adaptive Client Selection in Resource Constrained Federated Learning Systems: A Deep Reinforcement Learning Approach
Version 2 2024-06-13, 12:07Version 2 2024-06-13, 12:07
Version 1 2021-08-09, 08:26Version 1 2021-08-09, 08:26
journal contribution
posted on 2024-06-13, 12:07 authored by H Zhang, Z Xie, R Zarei, T Wu, K ChenAdaptive Client Selection in Resource Constrained Federated Learning Systems: A Deep Reinforcement Learning Approach
History
Journal
IEEE AccessVolume
9Pagination
98423-98432Location
Piscataway, N.J.Open access
- Yes
Link to full text
ISSN
2169-3536eISSN
2169-3536Language
EnglishPublication classification
C1 Refereed article in a scholarly journalPublisher
Institute of Electrical and Electronics EngineersUsage metrics
Categories
No categories selectedKeywords
Adaptation modelsClient selectionCollaborative workComputational modelingComputer ScienceComputer Science, Information SystemsData modelsData privacyEngineeringEngineering, Electrical & Electronicfederated learningmobile edge computingreinforcement learningScience & TechnologyServersTechnologyTelecommunicationsTraining4606 Distributed computing and systems software
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC