Deakin University
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Deakin University and we can't guarantee its availability, quality, security or accept any liability.

Adaptive Context Caching for IoT-Based Applications: A Reinforcement Learning Approach

Version 2 2024-06-02, 22:36
Version 1 2023-05-18, 06:08
journal contribution
posted on 2024-06-02, 22:36 authored by Shakthi Yasas WeerasingheShakthi Yasas Weerasinghe, Arkady ZaslavskyArkady Zaslavsky, Seng LokeSeng Loke, A Hassani, A Medvedev, Amin AbkenAmin Abken
Making internet-of-things (IoT)-based applications context-aware demands large amounts of raw data to be collected, interpreted, stored, and reused or repurposed if needed from many domains and applications. Context is transient but interpreted data can be distinguished from IoT data in many aspects. Managing context in cache is a novel area of research that has been given very little attention. Performance metric-driven adaptive context caching (ACOCA) can have a profound impact on the performance and cost efficiency of context-management platforms (CMPs) when responding to context queries in realtime. Our paper proposes an ACOCA mechanism to maximize both the cost and performance efficiency of a CMP in near realtime. Our novel mechanism encompasses the entire context-management life cycle. This, in turn, distinctively addresses the problems of efficiently selecting context for caching and managing the additional costs of context management in the cache. We demonstrate that our mechanism results in long-term efficiencies for the CMP that have not been observed in any previous study. The mechanism employs a novel, scalable, and selective context-caching agent implemented using the twin delayed deep deterministic policy gradient method. It further incorporates an adaptive context-refresh switching policy, a time-aware eviction policy, and a latent caching decision management policy. We point out in our findings that the additional complexity of adaptation introduced to the CMP through ACOCA is significantly justified, considering the cost and performance gains achieved. Our algorithm is evaluated using a real-world inspired heterogeneous context-query load and a data set based on parking-related traffic in Melbourne, Australia. This paper presents and benchmarks the proposed scheme against traditional and context-aware caching policies. We demonstrate that ACOCA outperforms the benchmarks in both cost and performance efficiency, i.e., up to 68.6%, 84.7%, and 67% more cost efficient compared to traditional data caching policies to cache context, redirector mode, and context-aware adaptive data caching under real-world-like circumstances.

History

Journal

Sensors

Volume

23

Article number

ARTN 4767

Pagination

1-51

Location

Switzerland

ISSN

1424-8220

eISSN

1424-8220

Language

English

Publication classification

C1 Refereed article in a scholarly journal

Issue

10

Publisher

MDPI