In an enterprise grid computing environments, users have access to multiple resources that may be distributed geographically. Thus, resource allocation and scheduling is a fundamental issue in achieving high performance on enterprise grid computing. Most of current job scheduling systems for enterprise grid computing provide batch queuing support and focused solely on the allocation of processors to jobs. However, since I/O is also a critical resource for many jobs, the allocation of processor and I/O resources must be coordinated to allow the system to operate most effectively. To this end, we present a hierarchical scheduling policy paying special attention to I/O and service-demands of parallel jobs in homogeneous and heterogeneous systems with background workload. The performance of the proposed scheduling policy is studied under various system and workload parameters through simulation. We also compare performance of the proposed policy with a static space–time sharing policy. The results show that the proposed policy performs substantially better than the static space–time sharing policy.