DOCUMENT
1/1
Amplitude and frequency variation in nonlinear glucose dynamics with multiple delays via periodic perturbation
journal contribution
posted on 2020-01-01, 00:00 authored by Adam Bridgewater, Benoit Huard, Maia Angelova TurkedjievaMaia Angelova TurkedjievaCharacterising the glycemic response to a glucose stimulus is an essential tool for detecting deficiencies in humans such as diabetes. In the presence of a constant glucose infusion in healthy individuals, it is known that this control leads to slow oscillations as a result of feedback mechanisms at the organ and tissue level. In this paper, we provide a novel quantitative description of the dependence of this oscillatory response on the physiological functions. This is achieved through the study of a model of the ultradian oscillations in glucose-insulin regulation which takes the form of a nonlinear system of equations with two discrete delays. While studying the behaviour of solutions in such systems can be mathematically challenging due to their nonlinear structure and non-local nature, a particular attention is given to the periodic solutions of the model. These arise from a Hopf bifurcation which is induced by an external glucose stimulus and the joint contributions of delays in pancreatic insulin release and hepatic glycogenesis. The effect of each physiological subsystem on the amplitude and period of the oscillations is exhibited by performing a perturbative analysis of its periodic solutions. It is shown that assuming the commensurateness of delays enables the Hopf bifurcation curve to be characterised by studying roots of linear combinations of Chebyshev polynomials. The resulting expressions provide an invaluable tool for studying the interplay between physiological functions and delays in producing an oscillatory regime, as well as relevant information for glycemic control strategies.
History
Journal
Journal of nonlinear scienceVolume
30Pagination
737 - 766Publisher
Springer VerlagLocation
Berlin, GermanyPublisher DOI
Link to full text
ISSN
0938-8974eISSN
1432-1467Language
engPublication classification
C1 Refereed article in a scholarly journalUsage metrics
Categories
Keywords
Delay differential equationsPeriodic solutionsPerturbation methodGlucose regulationDiabetesScience & TechnologyPhysical SciencesTechnologyMathematics, AppliedMechanicsPhysics, MathematicalMathematicsPhysicsINSULIN SECRETORY OSCILLATIONSREGULATORY SYSTEMULTRADIAN OSCILLATIONSGLOBAL STABILITYHOPF-BIFURCATIONMODEL