An Alternative Rural Housing Management Tool Empowered by a Bayesian Neural Classifier
journal contribution
posted on 2023-07-28, 05:09authored byMingzhi Song, Zheng Zhu, Peipei WangPeipei Wang, Kun Wang, Zhenqi Li, Cun Feng, Ming Shan
In developing countries, decision-making regarding old rural houses significantly relies on expert site investigations, which are criticized for being resource-demanding. This paper aims to construct an efficient Bayesian classifier for house safety and habitability risk evaluations, enabling people with none-civil-engineering backgrounds to make judgements comparable with experts so that house risk levels can be checked regularly at low costs. An initial list of critical risk factors for house safety and habitability was identified with a literature review and verified by expert discussions, field surveys, and Pearson’s Chi-square test of independence with 864 questionnaire samples. The model was constructed according to the causal mechanism between the verified factors and quantified using Bayesian belief network parameter learning. The model reached relatively high accuracy rates, ranging from 91.3% to 100.0% under different situations, including crosschecks with unused expert judgement samples with full input data, crosschecks with unused expert judgement samples with missing input data, and those involving local residents’ judgement. Model sensitivity analyses revealed walls; purlins and roof trusses; and foundations as the three most critical factors for safety and insulation and waterproofing; water and electricity; and fire safety for habitability. The identified list of critical factors contributes to the rural house evaluation and management strategies for developing countries. In addition, the established Bayesian classifier enables regular house checks on a regular and economical basis.