Deakin University
Browse

An Early Triassic (Smithian) stromatolite associated with giant ooid banks from Lichuan (Hubei Province), South China: environment and controls on its formation

Version 2 2024-06-06, 03:16
Version 1 2017-01-01, 00:00
journal contribution
posted on 2024-06-06, 03:16 authored by Y Fang, ZQ Chen, S Kershaw, Y Li, M Luo
Here we report the thickest Early Triassic stromatolite so far recorded, which developed within giant ooid banks in the upper Smithian succession (Lower Triassic) of the Lichuan area, western Hubei Province, South China. Approximately 16. m of stromatolite is embedded within ca. 30-m-thick oolitic limestones that crop out in the upper Daye Formation. The associated conodonts suggest a late Smithian (Early Triassic) age for the stromatolite-ooid complex. Stromatolites exhibit domal, stratified columnar, wavy laminated, cabbage-shaped, roll-up, and conical structures. Stromatolites are overlain by thick oolitic limestone, implying that the demise of the Lichuan stromatolite may be attributed to an environmental change to agitated shallow waters. Four types of microbially-induced microstructures are recognizable in the stromatolites, including diffuse laminated, reticular, intraclastic, and irregular clotted microstructures. Co-occurrence of these microbe-induced microstructures indicates a biogenic origin for the Lichuan stromatolite. The ooids can be categorized into circular, compound, superficial, and irregular types. Some interior layers within ooids exhibit intense fluorescence, indicative of microbial organomineralization, which may have contributed to the formation of the ooids. Moreover, abundant nanometer-scale textures and particles are usually interpreted as microbial involvement during the formation of the dolomite. These nano-textures in both stromatolites and ooids, and authigenic quartz grains commonly preserved in stromatolite can be attributed to abundant organic matter in seawater, resulting from microbial proliferation. The stromatolites described here are evidence of flourishing microbial communities on both eastern and western margins of the Paleo-Tethys Ocean during the middle Early Triassic, suggesting episodic degradation of marine ecosystems after the Permian-Triassic mass extinction.

History

Related Materials

Location

Amsterdam, The Netherlands

Language

eng

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2017, Elsevier

Journal

Palaeogeography, palaeoclimatology, palaeoecology

Volume

486

Pagination

108-122

ISSN

0031-0182

Publisher

Elsevier

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC