posted on 2025-09-17, 05:15authored byLijun Zhang, Han Zou, Ye ZhuYe Zhu
Amazons is a computerized board game with complex positions that are highly challenging for humans. In this paper, we propose an efficient optimization of the Monte Carlo tree search (MCTS) algorithm for Amazons, fusing the ‘Move Groups’ strategy and the ‘Parallel Evaluation’ optimization strategy (MG-PEO). Specifically, we explain the high efficiency of the Move Groups strategy by defining a new criterion: the winning convergence distance. We also highlight the strategy’s potential issue of falling into a local optimum and propose that the Parallel Evaluation mechanism can compensate for this shortcoming. Moreover, We conducted rigorous performance analysis and experiments. Performance analysis results indicate that the MCTS algorithm with the Move Groups strategy can improve the playing ability of the Amazons game by 20–30 times compared to the traditional MCTS algorithm. The Parallel Evaluation optimization further enhances the playing ability of the Amazons game by 2–3 times. Experimental results show that the MCTS algorithm with the MG-PEO strategy achieves a 23% higher game-winning rate on average compared to the traditional MCTS algorithm. Additionally, the MG-PEO Amazons program proposed in this paper won first prize in the Amazons Competition at the 2023 China Collegiate Computer Games Championship & National Computer Games Tournament.