The advent of commodity-based high-performance clusters has raised parallel and distributed computing to a new level. However, in order to achieve the best possible performance improvements for large-scale computing problems as well as good resource utilization, efficient resource management and scheduling is required. This paper proposes a new two-level adaptive space-sharing scheduling policy for non-dedicated heterogeneous commodity-based high-performance clusters. Using trace-driven simulation, the performance of the proposed scheduling policy is compared with existing adaptive space-sharing policies. Results of the simulation show that the proposed policy performs substantially better than the existing policies.