Different data classification algorithms have been developed and applied in various areas to analyze and extract valuable information and patterns from large datasets with noise and missing values. However, none of them could consistently perform well over all datasets. To this end, ensemble methods have been suggested as the promising measures. This paper proposes a novel hybrid algorithm, which is the combination of a multi-objective Genetic Algorithm (GA) and an ensemble classifier. While the ensemble classifier, which consists of a decision tree classifier, an Artificial Neural Network (ANN) classifier, and a Support Vector Machine (SVM) classifier, is used as the classification committee, the multi-objective Genetic Algorithm is employed as the feature selector to facilitate the ensemble classifier to improve the overall sample classification accuracy while also identifying the most important features in the dataset of interest. The proposed GA-Ensemble method is tested on three benchmark datasets, and compared with each individual classifier as well as the methods based on mutual information theory, bagging and boosting. The results suggest that this GA-Ensemble method outperform other algorithms in comparison, and be a useful method for classification and feature selection problems.
History
Journal
The IEEE intelligent informatics bulletin
Volume
9
Pagination
18 - 24
Location
Washington, D.C.
Open access
Yes
ISSN
1727-5997
eISSN
1727-6004
Language
eng
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.