Abstract
Background
Decades of research is available on their effects of single component surfactant on active ingredient diffusion across plant cuticular membranes, but ingredient diffusion is rarely analysed in the presence of commercial surfactants. Also, diffusion studies require expensive or specialized apparatus the fabrication of which often requires skilled labour and specialized facilities. In this research we have addressed both problems where the effects of four commercially available surfactants on a known tracer molecule were investigated using a 3D printed customized diffusion chamber.
Results
As a proof-of-concept a customized 3D printed diffusion chamber was devised using two different thermoplastics and was successfully used in a range of diffusion tests . The effect of various solvents and surfactants on S. lycopersicum cuticular membrane indicated an increased rate of flux of tracer molecules across the membranes. This research has validated the application of 3D printing in diffusion sciences and demonstrated the flexibility and potential of this technique.
Conclusions
Using a 3D printed diffusion apparatus, the effect of commercial surfactants on molecular diffusion through isolated plant membranes was studied. Further, we have included here the steps involved in material selection, design, fabrication, and post processing procedures for successful recreation of the chamber. The customizability and rapid production process of the 3D printing demonstrates the power of additive manufacturing in the design and use of customizable labware.