Deakin University
Browse

File(s) under permanent embargo

Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

journal contribution
posted on 2015-05-28, 00:00 authored by Greg KowalskiGreg Kowalski, D P De Souza, M L Burch, Steven Hamley, J Kloehn, Ahrathy SelathuraiAhrathy Selathurai, D Tull, S O'Callaghan, M J McConville, Clinton BruceClinton Bruce
Rationale Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-13C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring 13C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.

History

Journal

Biochemical and Biophysical Research Communications

Volume

462

Issue

1

Pagination

27 - 32

ISSN

0006-291X

eISSN

1090-2104

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2015, Elsevier