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Appropriate Choice of Aggregation Operators in
Fuzzy Decision Support Systems

Gleb Beliakov and Jim Warren

Abstract—Fuzzy logic provides a mathematical formalism for and~ is symmetric and reflexive. The second condition guar-
a unified treatment of vagueness and imprecision that are ever antees that there are sufficiently many real numbers to represent
present in decision support and expert systems in many areas. The inq nreference relation. Formally, it states that there must exist

choice of aggregation operators is crucial to the behavior of the .
system that is intended to mimic human decision making. This a countable subset C X, such that for any two alternatives

paper discusses how aggregation operators can be selected and ad®; ¥ € X, & = Y ther_e existy € A : -2y An example _
justed to fit empirical data—a series of test cases. Both parametric when the utility function does not exist is when two or more cri-

and nonparametric regression are considered and compared. A teria are ordered lexicographically [27], [37]
practical application of the proposed methods to electronic imple-

mentation of clinical guidelines is presented. (z1,22) = (y1,142) <= [r1 > y1 0r(z1 = y1, 72 > 12)]-
Index Terms—Aggregation operators, clinical guidelines, mono- . L . . .
tone splines, restricted least squares. The utility function is defined up to an increasing monotone

transform, which preserves the ordering of the alternatives. A
positive linear transformy(z) = aw(z) + b,a > 0, preserves
not only the ordering but also the order of preference differ-
XPERT and decision support systems are common in tegces. Consequently, the utility function can always be scaled
areas where the alternatives are selected based on cé@ra suitable interval (the unit intervéd, 1] for convenience)
bined support of a number of factors, none of which could deith a simple change of variables. In this paper, without loss of
termine the alternative by itself. An example of such an areadsnerality, the range of the utility functions will be presumed to
medicine, where diagnosis or management are almost neverf[0, 1].
cided based on individual criterion. A weighted combination of In fuzzy set theory (FST), membership functions of fuzzy
many criteria is used instead, each criterion may support vaets play the role similar to the utility functions—the role of de-
ious alternatives, and the alternative with the strongest supp@iees of preference [10]. Many authors, including Zadeh him-
is selected as the decision. self, refer to membership functions as “a kind of utility func-
This is a typical problem of multicriteria decision makingions” [13], [23]-[25], [42], [58], [68], [70]. The equivalence
(MCDM), various approaches to which have been discussedohutility and membership functions extends from semantical to
[16], [30], [37], [38], [44], [70]. One important class of methodsyntactical level [8], [9]. Although, this is not the only possible
in MCDM is based on constructing a utility or value functiorinterpretation of membership functions [7], [24], it allows one
u(x), which represents the overall strength of support in favge formulate and solve problems of MCDM using the formalism
of the alternativer. This approach is known as multiattributeof FST.
utility theory (MAUT). The vector maximization problem of MAUT
In MAUT, one can represent the preference relattoon a
set of alternatives with a single-valued function(z) on X,
called utility, such that for any,y € Xz > y < u(z) >
u(y). Maximization ofu(x) overX provides the solution to the
problem of selecting:.
Essentially, there are two conditions that guarantee the ex-  Maximizeu(x) = U(uy(x1), ug(2), ..., un(xy))
istence of the utility function. One is that the relatignis a
complete preorder, that is, all alternativesinare comparable wherel/ is some function of. real variables which aggregates
and can be either preferred one to anoter- %) or be indif- the individual utility values into the overall utility of the alter-
ferent(x ~ y), both = and~ are transitive is asymmetric, nativex. An essential assumption is that the individual utility
functionsu,(x;) exist, in other words, the attributes are utility

. . . .__independent of the other attributes.
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. INTRODUCTION

Maximize (u1(x1), ua(xa), ... un(z,)) overX

wherew;(z;) are the utility functions of the corresponding at-
tributesz;, takes the form
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on the setA;, A,, ... A, such as intersection, union, or theifThis, of course, does not exclude other forms of advice, such
combination. For exampl& could be4; N A>A3,0rA; UA>, U as consultation by the clinician of general information about

Az, or (A; N Ap) U Az, etc. diseases, treatments, protocols, guidelines, etc. But our primary
In MAUT, the combining function/ is usually additive or goal is to develop mechanisms of customising the advice to the
multiplicative specific problems of a given patient.
This problem has two faces: 1) generation of the advice and
U(x) = ayug (21) 4 agus(z2) + - - + antn(z,), OF (2) its delivery. We have discussed the problem of the delivery
1 of the advice, including fuzzy advice, elsewhere [10], [64], [65].
Ulx) = ﬁ[(l + payuy (21))(1 + pazuz(wz)) - - This paper addresses generation of the advice based on the elec-

tronic patient record (EPR). Also, we do not discuss the problem
of diagnosis and the associated problem of representing general

although, other functions are not explicitly prohibited. Addimedical knowledge. We limit the scope of this paper to a spe-

tive aggregation, as well as max, min and product operators, SH¢ niche of generating advice on treatment and patient man-
traditionally used in neuro-fuzzy systems [15], [40], [41], bﬁgemgnt opt|0n.s, bas.ed on clinical prac.tlge gwd'ellnles.
again, more general forms of aggregation are allowed. Clinical practice guidelines (hereaftetinical guidelinesor

In FST the aggregation operators take a large variety of fom%r,nply guideline$ are standardized specifications for care de-
veloped by a formal process that incorporates the best scien-

e.g., min, max, Yager, Dubois & Prade, Schweizer & Sklar,’* ) ; ’ 7h :
Hamacher, Frank, Dombi families, averaging operators, ordefdif evidence of effectiveness with opinions of experts in the

weight aggregation (OWA), compensatory operators, operatdfids [47]- In general, they have been developed in an effort to
based on Choquet and Sugeno integrals, etc. [22], [23], Bﬁduce escalating health care costs without sacrificing quality
[32], [42], [52]-[55], [70]. Aggregation operators have been e@Nd have been shown to improve health care outcomes when

tensively studied and their application to MAUT problems prd®!lowed [34]. To b'e effective, guidelines need to be integrated
vides a good theoretical setting. into the physician’s decision-making process in daily practice

The choice of aggregation operators in FST is not simple. 1145]. Ithas been recognized that the guideline statements should

tially, only min andmax operators were used to model fuzzy selfe_’ linked to the actual patient data, and therefore be integrated

intersection and union, primarily because of their strong alg@ith the EPR. The most predictable impact is achieved when

braic properties: these are the only operators that preserve nj{}e 9uideline is made accessible through computer-based, pa-

tual distributivity. With the development of the theory other OIOt_|ent-specific reminders that are integrated into the clinician’s

erators have emerged. They provided compensatory properfgkflow” [45], [69]. That is, ideally one provides guidance
gyt in time” in a clinical workstation environment—for ex-

and better fit to empirical data and, therefore, seemed to moJH - ) ) . ’
human decision making better. Nowadays, there are some%ple’ as v_wth a drug interaction alert at the time a doctor writes
different families of aggregation operators used in various appf-Prescription. .~ '

cations. Theoretically, they are all equivalent and can be mapped0st current guidelines are not represented in the form of al-
to a class of metrics in which the similarity to the Ideal altern&°rithms. Instead, they are implemented in the form of text nar-
tive is measured [8], [9]. Therefore, other criteria have to be usEfives, describing possible medical conditions and signs with
to select the appropriate aggregation operator [70]. Among thdRe appropriate recommendations. This fact creates a significant

criteria we will emphasize the empirical fit, adaptability and s@bstacle for computerising clinical guidelines, their electronic
mantical clarity. exchange and assessment. Despite recent progress in developing

This paper will discuss various methods of selecting and a@mal syntax for guideline representation [45], [47]-{50], [57],

justing aggregation operators based on empirical data and exfe#l: [69], in the computerised form the guidelines are mostly
opinion. We consider the situations whereariori knowledge  translations of text-based narratives [69].

about the properties of operators is available, and therefore thejt 1S the task of knowledge engineers to extract knowledge
have to be built using exclusively empirical data, as well as tffi@m health professionals and to represent guidelines in
situations where the expert opinion dictates the form of the OF_ore suitable (for computers) form, such as the collection of
erator and the available free parameters are adjusted to fit the-then .. rules. Itturns out, however, that even if formulated
data. We illustrate this process on model problems, and thendh!f- - then .. rules, clinical guidelines are still not suitable

a real application of a medical decision support system that fQf computer implementation. There are different sources of
corporates clinical guidelines. uncertainty present, among which are: lack of information,

nonspecificity, probabilistic nature of data and outcomes,
vagueness of recommendations, strife and fuzziness in deter-

Il. CLINICAL GUIDELINES IN MEDICAL DECISION SUPPORT mination and interpretation of clinical signs [1], [7], [36], [43],

SYSTEM
[49], [65].

Almost any medical computer application can be classified In this paper we only deal with the problem of fuzziness and
as a medical decision support system—a computer program dagueness, regardless of their source. Suppose that the guideline
signed to help health professionals make clinical decisions [6as been formulated as
In this paper we are considering only those applications that
provide clinicians with some form of active customized advice,
based on symptoms and signs from the electronic patient record. Ifris A AND zis B, THEN C.

(14 panup(en)) — 1]
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Herex is a linguistic variable A and B are fuzzy sets an@' is the alternative, the overall support cannot decrease), and the nor-
the rule consequent. For example, one such guideline could tmlization conditions guarantee consistency with classical logic
in the limiting case.

If z is obeseAND z is smoker General aggregation operators display the whole range of be-
havior: disjunctive, conjunctive, averaging, mixed, commuta-
tive, mutually reinforcing or otherwise, and correspond to vague
and loosely defined “and” and “or” connectives, or synergism

THEN check blood pressure every visit

Both setsobeseandsmokerare fuzzy, and the numerical vari- 1]
ables body mass index (BMI), defined as the ratio of weight arLﬁ l'l anareqation operators are equivalent to the distance to
the square of height of the patient, and the number of cigarettﬁé. ggrey ! op : q .

per day determine the membership values af these sets. To the ideall or antljldeaIO in the relevant metric [8.]’ [9l, and_ .
calculate the strength of the recommendation, the members Srefore are equivalent among themselves. Particular families

values of both antecedents must be combined using an aggré) \ggregation operators have been identified by enforcing some

tion operator, and then the result is used as the argument of erI properties, s dUCh as commgtatwny gnd assoc,:[|at|V|ty. T”'”
implication operator. angular norms and conorms and averaging operators are we

This process seems straightforward, and generally, knowr: exe;}mples [23], [;,2]’ [55], [70,[]' Howevetr, many other
product, or other simple operators are used for aggregati crators have emerged. compensatory operators, uninorm op-

in such simplified examples. When it comes to prac,[icﬁrators,orderedweighted aggregation, operators based on Cho-

implementation of the system, however, it turns out thgtuet and Sugeno fuzzy integrals, piecewise continuous opera-

its behavior is quite different from that of the experts Wh&ors, ete. [31], [32], [52]-[54]. Families of aggregation opera-

provided the rules. Firstly, despite having identical form qtg;ig\é?;si%:g?]e include other families, some form equiva-

the antecedent, likel AND B AND C, different rules seem B diff t ol f i i disol
to require different aggregation operators. Secondly, the rule ecause direrent classes of aggregation operalors dispiay

antecedents are usually more complicated. Combination ScH‘b stantially differer_1t behavio_r, itis not Iogic_al to use any par-
conjunction and disjunction, likeA OR B OR C) AND (D ticular class to p_rowde generic represeptauon of aggregation.
OR E), are common. Thirdly, the meaning of the connective-gherefor(.a’ we will use general aggregatllo.n operators to model
“and” and "or” is not fixed. In some places they correspon ggreg{mon O.f rule antecedents in decision sqpport systems.
to disjunction and conjunction, in other places the meaning ey W|Il'prowlde the hlghgst degree of adaptability and excgl-
reversed (consider the statement “the drawer contains fo!‘ ot emplr_lcal fit How_ever, |fthe_re are strong reasons to restrict
AND knives” [36]), and in some cases they do not correspoﬁ e selectionto a pa_rtlcular family of operators, we will impose
relevant constraints.

to either. This is the case when various criteria support eai . . .
other and trigger the rule collectively (what Kasabov calls Consider general aggregatlon operafex). The functionf
synergism ([41], p. 357), or when the criteria display conjun@-an have a simple algebraic form, such as
tive and disjunctive behavior simultaneously (compensatory F(x)
operators [70]), or when aggregation depends on their values

(i.e., conjunctive behavior for small values and disjunctive (X) =1 X 22 X &3 X - X @y OF

behavior for big values [54]). Consequently, it does not look f(x) =min(l,z; +x2 + 23+ +x,) OF
feasible to predefine the form of the aggregation operators and fX)=(x1+a2+a3+" " +1,) /N0

use them throughout the rule base, one for “and”, the other for

“or.” Instead, each rule should be examined separately and thean also be a combination of simple operators, like

appropriate operator for it should be found based on the feelin

x) = min(zy, 2, &3,...,Z,) OF

Sy

of the experts and on their actual decision pattern over the sef 6K) = @ Min(e1, €2, 23, .+ Tn)
typical examples. The following sections describe this process +(1 — o) max(zy, 22,23, .- -, Tn).
in detail.

The degrees of importance of rule antecedents (vector a) can
be easily incorporated into aggregation operators in a variety of
ways [8], [67], [68]. For example

When the rules in the decision support system contain more
than one antecedent, the degrees of strength of the antecedents/ (X) = min(zy, a1) X min(zz, az)
need to be combined to determine the overall strength of the X min(zs, ag) X -+ X min(x,, a,) or
rule consequent. In the Ianguage_ of fuzzy sets, the membership ¢(x) = min(1, a1z + asw2 + aszs + - - + anan)
values of the linguistic variables in the rule antecedents have to
be combined using an aggregation operator. Formally, a genefalan incorporate permutations of the antecedents (OWA) or can
aggregation operator is a real functipn [0, 1] — [0, 1], non- be expressed as Choquet or Sugeno integrals [32], [42], [43].
decreasing in all arguments, with the propertié8) = 0 and Finally, f might not have a meaningful algebraic representation.
f(1) = 1 (a number in bold denotes anvector) [42], [55], In this case we think of it as a functigf{x; p), which depends
[70]. This is the most general mathematical representation ari parameterg, that could be adjusted to fit empirical data.
aggregation, because the monotonicity requirement is esserltiadll cases,f needs to be nondecreasing in all arguments, and
for order preservation (if one criterion increases the supporttof satisfy f(0) = 0 and f(1) = 1.

lll. A GGREGATION OPERATORS
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Our task is to select one or another operator for a given de- TABLE |
cision rule based on observed decision pattern of the experts. INDICATORS FORBONE DENSITY STUDIES (BDS)
iri APANY

We assume that empirical data Qf the foftx;, v;) }1_,, where Factor Weight
x; are the vectors of membership values of the antecedents and

1; are the strengths of response of the expert, is available. In Postmenopausal female 2
addition, the expert’s opinion about the algebraic form of the Multiple hospital admissions 2
operator or its properties, and the initial guess about the degrees Low body weight 1

of importance of the criteria might also be available.

. . . FEV1 <60% of predicted 2
Essentially, we have two established techniques we can use : 0o pfe_ e

(1) parametric and (2) nonparametric regression. In parametric Poor physical activity 2

regression, we fix the algebraic form of the operator, and fit Smoker 1

the available free parameters to the data. The main advantage
of this approach is its clarity: the parameters have semantical

meaning, properties of the operator are known, its behaviorijgtion where bone density studies (BDS) has indicators as per
predictable, and, if necessary, calculations can be performgghle |. Some indicators are considered strong indicators (e.g.,
with pen and paper. Moreover, if the algebraic form of the opepstmenopause), whereas other indicators are mild. None of the
ator has meaning in the specialist's domain (as discussed in ghicators is sufficient by itself. If the total score is greater than
next section), then not only the end result but also intermediafye, BDS is recommended.

steps of aggregation are clear. Such a system of scores is modeled by the (weighted)

In contrast, in nonparametric regression parameters are megganded sum operator (member of Yager family of triangular
inglesst and aggregation operator behaves like a black bagnorms [42])

However, the nonparametric representation is much more adapt-

able and versatile (in modeling functions of different shapes), f(x) = min(1, a 21 4 asxa + ases + - - + anty ).

it provides much better fit to empirical data and does not rely

on the correctly selected class of aggregation operators. Morgre importance factors; are simply the indicators’ scores di-
over, the technique of splines we presentin a later section alloyiged by 5. Therefore, the algebraic form of the aggregation
one to balance the generality of representation with the needbjiserator is given. However, the importance factors might not
specify particular classes (e.g., commutative operators or triase correct: given values reflect the guess of the experts about

gular norms). their relative importance. “Guess” may seem a slightly unfair
Let us formulate the problem formally. term:; this is to say that it is the expert opinion based on con-
sideration of a variety facts possibly external to their experience
A. Problem (e.g., through reading research literature) as well as from their

Given empirical data{(x;,v;)}._,, and possibly experts’ personal observation, however, lacking an explicit derivation of
opinion about the aggregation operator, find such representatib@ weighting factors from the evidence. For example, in the

of the aggregation operator that case of the BDS guideline, a literature review [63] reveals that
1) provides good approximation to empirical data; some risk factors have been clearly established as having a sig-
2) is flexible to model various classes of aggregation Opergij‘icant, independent contribution to loss of bone mass by ran-
tors: domized controlled trials (RCTs) in clinical contexts very sim-
3) is able to confine to a particular class of operators, orli@r to the area of intended application for this guideline—these
particular property; are given a weight of 2. Other factors are less well established
4) is semantically clear. by relevant RCTs but have some empirical evidence or analyt-

ical feasibility—these receive a weight of 1. Empirical findings
are not available to firmly establish the strength of all correla-
tions among the factors or to provide direct evidence for a par-
ticular aggregation method. The concept of a simple threshold
In this section, we consider the situation where the expefs BDS based on the weighted sum is as much a concession to

have a clear idea about the form of the aggregation operator, Rigfing a computationally simple and easily-expressed criterion
are not sure about certain parameters, such as the relative imggry firmly-held belief of the experts.

tance of rule antecedents. These parameters can be adjusted ¢he way of determining the importance factors is to use the
fit the empirical datdx, y) by using nonlinear regression techanalytical hierarchy process (AHP) by Saaty [61]. However, the
niques. ratios of relative importance may not be available from the ex-

_ A typical example in medical decision making is aggreggserts, besides, the weights of importance need to be somehow
tion of risk factors or indicators. For instance, consider the siigrmalized. The normalization crited® a; = 1,3 a; = n,

IThe adjective “nonparametric” is misleading. Nonparametric methods (al€% Maxa; = 1 [67] do not always make sense (e.g., in the
called distribution-free in statistical literature) actually do involve parametedsounded sum operator). Of course, the problem of normaliza-
either fixeda priori or estimated _from t_he data_l. Unlike in pa_rametric approachion can be somehow resolved, but the fact that AHP requires
these parameters are not meaningful in relation to the original problem. A com- s .
prehensive discussion of the method of splines in nonparametric regressiofoWledge elicitation procedure makes it unusable when ex-
given in [28]. perts’ knowledge is not readily accessible. In contrast, the em-

IV. FITTING TO DATA AND EXPERT OPINION: SEMANTICAL
CLARITY
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pirical data—expert responses to given situations, can be rou-
tinely (and automatically) collected. 11

The alternative way of adjusting importance factors is to ob-
serve experts’ decision pattern on a set of model situations and to
find the values via nonlinear regression. Nonlinear least squares
algorithms, such as Levenberg—Marquardt method [46], are ex-
tensively used for this purpose and could be found in commer-
cial software (e.g., [19]). As the initial approximation, the ex-
perts’ guess about the importance factors can be taken.

In our model problems we used the Levenberg—Marquardt
method implemented in DataFit software by Oakdale Engi-
neering, Inc., Oakdale, PA. [19]. As the operator we wanted to
reconstruct on the basis of empirical data, we have chosen the
bounded sum operator with 6 antecedents and the importance
factorsa = (0.5,0.3,0.25,0.3,0.4,0.3)* (this was the experts’
consensus in the BDS example—see last section). As the initial
guess the vectoy = (0.4,0.4,0.2,0.4,0.4,0.2)* was taken. Ry ] 1 S 3 a 5
It represents experts’ initial opinion about the aggregation
operator (Table 1). To test the method, we randomly generatgg. 1. Second ordeB-splines.
20 cases (vectors) and modeled the experts’ solutions to them

using the selected aggregation operator, with added randgfmnd good smoothness. Linear and quadratic splines are fre-
noise, uniformly distributed in—0.1,0.1] (valuesy). This quently used to represent membership functions of fuzzy sets,
model of the empirical datgx,y) was used to reconstruct thejncluding neuro-fuzzy systems [2], [15], [41]. In fact, tensor-
aggregation operator. We replicated this numerical experimwbduct spline approximation can be seen as a neural network
20 times and obtained a very good fit (mean error in coeﬁicier§§stem (lattice-baseli-spline network [15, Ch. 3], [8], which is
<0.05) in all cases, despite the noise in the data. equivalent to the adaptive neuro-fuzzy system ANFIS [40, Ch.

Confident in the robustness of this method, we applied it tp]. However, we prefer to use traditional spline approximation
the real data: 20 actual cases obtained during the developm@ihinology in this paper.

of care plan on-line (CPOL) system described in the last sectionyye will use second-ordeB-splines B2(z) on a uni-
J

form mesh because of their simplicity and mild smoothness

In many cases it is hard to identify the appropriate form of tHeontinuity). GraphicallyB7(x) splines are shown in Fig. 1.
aggregation operator before adjusting it to the data. Besides V4@ split the [0, 1] interval into three regions, and therefore
expert’s “feeling” about it sometimes could be misleading. It iwe have 4 (appropriately scaled-splines which are not 0
usually based on the simplicity argument, which may result 8 [0, 1]. These splines form the basis for each variable. For
oversimplifying. For instance, the scores system for indicato®® aggregation operator takiny arguments, thel™ basis
or risk factors is designed for calculations by medical pracfiunctions are given as tensor products of univarigtsplines
tioners with pen and paper, and therefore semantical and nurds-...jx (X) = Bj, (21)Bj,(22) ... Bj,(zK). The coefficients
ical simplicity are the most important. For computer implemer ¢an be numbered in the similar way, thapis...;, and the
tation of a decision support system these criteria, specifically tfgmula for f becomes

2 2
B 1(x) B 2(x)

numerical simplicity, are of secondary importance. The quality 4
of fit becomes the d(_)mlnatlng factor. Th|s_sect|on descrlb_es the(x) = Z Piviinnoin Bi (1) By, (22) . .. Bj, (zxc).
use of nonparametric methods to approximate aggregation op- O S
erators.
Let us represent the aggregation operator as the linear cobh€ Vector of coefficientp can be determined from scattered
bination data using least squares method [20], [46], and the spline is re-

5 ferred to as the least squares spline.
When used to approximate aggregation operators, however,
fex) = Zp 05 (X) this technique does not give satisfactory results: it fails to take
= into account the monotonicity ¢f(x) and boundary conditions
whereb;(x) is a collection of basis functions ang are co- f(0) = 0andf(1) = 1. The boundary conditions can be dealt
efficients. As our basis functions we choose products of unidth easily: the coefficientg;;. 1 andpys. 4 must be set to O
variate B-spline functions. The aggregation operator becomeasd 1, respectively. The monotonicity, which is essential from
a tensor-product polynomial spline whose coefficients can Bemantical point of view, requires a more careful consideration
found using the least squares method. [59], [60].
The advantages dB-splines for approximating functions are Even though the data to which the spline is adjusted is mono-
widely documented [14], [15], [20], [28]. These functions aréone, the splines themselves are not necessarily monotone.
easy to calculate, they provide enormous flexibility, excellefthis is illustrated in Fig. 2 in the univariate case. For splines
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u SinceB7, , () is increasing ands(xx) is decreasing, the con-
dition that () > O translates int@; 1 > p;. In other words,
the coefficients of the monotonically nondecreasing sptine

" form a nondecreasing sequence. To comply vith) = 0 and
f(1) = 1, the sequence must start with 0 and terminate with 1.

Let us represent the coefficients slightly differently. pet=
0.8 vy, andp; = pj_1 +v; = > %1 vk, v; > 0. (1) becomes
J J J J
10-3 (Su) B0 -0 mon @
j=1 \k=1 J=1  k=j
The matrix of the system of normal equatioAs = r is given
0.4l by
I J J
an =5 (S Bt ( Bmm))
0.2 =1 =5 m=k
whereas the components of the right-hand side are
UJL_""_"—D‘E—/ Y o 0B — ! d
=2 | 2 Bilwd) | ui
X i=1 \ l=j

Fig. 2. Least squares spline does not preserve monotonicity of the data. \where] is the total number of data poin@“ yz) and.J is the
number of basis functions. The components of the vectoust

whose nodes coincide with data points, the solution is to ube nonnegative.

constrained splines [2], [3], [5], [20], [26], [28], [33], [39]. The naive approach outlined above can be generalized into

For multivariate case this would require data to be given ontlae following.

rectangular mesh, which is not the case in most problems—thdroposition: The necessary and sufficient condition for

data is scattered. One approach to monotone approximativanotonicity of linear and quadratic splinds£ 2 andk = 3)

of scattered data is Powell-Sabin splines [66]. This approach 7

is numerically expensive, and is used mostly for surface _ ok

approximation. Thin-plate splines [20] with the appropriate Sle) = ;%Tj ()

restrictions can also be used, but again, this approach is rather ’

complicated [59]. with

In this section, we will present an approach based on re- J
stricted least squares splines. It is semantically and numerically T]k (r) = Z Bl’“ ()
simple: tensor products of univariate splines are used as the basis =

functions and general restricted least squares problem has heen o0 high d i his i |
thoroughly studied [4], [18], [35], [46], [51], [59], [60]. isv; > 0,5 =—1,...,.J. For higher-order splines, this is only

Consider first the univariate case. The monotonic functiofl"lsmhﬁ(:ie?]t c](c)nditi_on [1,}]’ [12]. idal i
f(x) is represented as Here the functionsl’;'(z) (trapezoidal, orl-splines) are

linear combinations of the usu&l-splines and they are chosen
J as an alternative basis t&-splines, because they express
flx) = ijBj(a:). (1) monotonicity restriction in a very simple form, as nonnegativity
j=1 of the coefficients. Simple relation betweéh and 7T-splines
allows one to calculate the new basis immediately. Calculation
of spline coefficients is performed by solving the system of
00 normal equations.
Z Bj(x)=1. Thus, we arrived to the classical problem of restricted least
j=—oo squares [46]. The solution is guaranteed to exist either inside
the admissible domain (positive componentsvyfor on the
In the case of second-order splinB$(x), only 2 neighboring poundary (some components are 0). Various methods of solution
splines are not 0 at any point The partition of unity property are known. The method of Lagrange multipliers is one of them
implies that the derivativeB? (x) + B}, (z)) = 0, and there- [46], [51]. Alternatively, branch-and-bound algorithms can be

It is well known thatB-splines form a partition of unity, that is

fore (B3 (x))" = —(B};,(x))’. The derivative of the spline  employed [4]. One such method takes advantage of the special
, ) ) , form of the constraints and permits the reduction of the search
f'(@) = (p; Bj (%) + pj+1 Bi 41 () space (the size i/, J is the length ofv) significantly [17],
= (B?+1(.T))/(pj+1 —pj)- [18]. The nonnegative least squares algorithms NNLS and LSEI
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v If all the coefficientsv,, ;, satisfy
14

WV Vi

S UG 20 Gu=12,...4

Jji=1 Jx=1
0.8 Vi=1,2,...,4 l#uv v=12,....K

the functionf(x) is nondecreasing in all arguments. The sums

ool are taken over all combinations of upper index limits! # w.

' Altogether, there are at mogf x 4% inequalities (some are
redundant). They can be easily represented in matrix form, and
the matrix consists of Os and 1s arranged in a fashion consistent

0. with the indexing system.
For example, in two-dimensional (2-D) case we have
t
o4 Z Vjyj, 2 0
ji=1
foreveryj, =1,...,4 and ¢t=1,...,4 and
t
- L3
0 0.2 Z Vjijp 2 0

j2=1
foreveryj; =1,...,4 and t=1,...,4.
Fig. 3. Constrained least squares spline. ) . )
The next step is to build the system of normal equations and

] ) . to solve the problem using any restricted least squares algo-
are described in [35], [46] and are available from NETLIB [21]rithm, such as LSEI [21], [35], [56] or BVLS [17], [21], [46],

[56]. Fig. 3 shows the monotonic least squares spline calculajed). consider LSEI method. It consists in solving the following

Let us now turn to multivariate case, important for approxi-
mating aggregation operators. The functjf{x) has to be non-

H H . ~ i > =V
decreasing in all arguments. Since SolveTv ~y, giventhatGv >0 and Ev=y

where the first system of equations describes approximation

4 conditions, the system of inequalities ensures monotonicity and
F& = > pije.iBi(@1)Bj,(x2). .. Bj(zx)  the last system describes additional interpolation conditions (it
J1sdzsennde=1 could be empty).

. - . ) The ability to incorporate interpolation conditions (besides
it can be shown that the monotonicity condition translates '”toﬁﬁing the data) turns out to be very useful when approximating

set of linear restrictions opy,...;, . T ‘f’“’o_'d algebraic difficul- 0 reqation operators. Recall that aggregation operators require
ties, we will usé_T—spIme bas_ls again; this will give the systemf(o) — 0andf(1) = 1. Rather than imposing complicated re-
of normal_equatlons almost immediately. strictions on the coefficients, one can simply add two inter-
As earlier, let polation conditions into the systeladv = y and the required
boundary conditions will be satisfied.

J J This technique can be extended further to impose other
f(a:)zZvaj(a:), whereTj(a:)zz:Bk(a:). restrictions on the aggregation operators. For instance,
j=1 k=j triangular conorms satisfyf(0,0,...,z,...0) = =z and

_ ) ] ) f(1,1,...z,...1) = 1 for any = at any position, (triangular
All new basis functions are linearly independent and nondgorms have a similar property). These restrictions can be
creasing on the interveD, 1], therefore, their positive linear enforced by adding the relevant interpolation conditions to
combination is also nondecreasing. They are related to inffe systemEv = y (namely atz = 0,1/3,2/3,1). The

The tensor product of nondecreasing basis functionsis alsongy; ;) = 4 is needed. Commutativity of the aggregation
decreasing in all arguments in every poin{@f1]*. Therefore operator is enforced by making the matiix symmetric, as
we expressf(x) as discussed in [11], [12]. Finally, the associativity property is
enforced by approximating the additive generators [11], [12].
4 Fig. 4 shows the result of approximating a triangular conorm
f(x) = Z Uiy join Doy (@) Ty (2) .. Ty, (1) with monotpne tgnsor product least squares spline. The (n.oisy)
g ie=1 data are given in the form of 20 randomly scattered points,
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@) Fig. 5. Empirical data used to approximate fuzzy set intersection in “metallic
Mpredicted container” example [59]. Monotone spline aggregation operator.

Wl
. membership (the straight line indicates perfect prediction for
error-free data). Following [70], we tested the acceptability of
the constructed operator statistically using Studeast for the
~ differences between empirical and predicted grades of member-
f ship. The mean of the sample is 0.000 03 (versus 0.052 for min
operator [70]), the observed standard deviation is 0.036 (versus
asl 0.067) and the result is= 0.00 (versus 3.471), which means
: that at a given confidence levgl = 0.025) the proposed aggre-
gation operator should be accepted (min is rejected). Increasing
confidence level ter = 0.000 01 does not change this result.

The proposed approach of constrained least squares splines
compares favorably with other methods of approximation of
aggregation operators, such as using neural networks or non-
024 linear regression [29]. First of all, the method of splines is linear
and consequently the solution is reached in the first iteration.
Secondly, it allows one to represent monotonicity explicitly, as
nonnegativity of the coefficients, whereas in other methods this
is not feasible. Splines are very flexible to model functions of

H e any shape, and their quality of fit is controlled by the number
(®) of approximation knots. Finally, many semantically important
Fig. 4. (a) Hamacher sum operatptz,y) = (= +y — 2zy)/(1 — xy)  properties of certain families of aggregation operators, such as
o) Semerma ns e ek i St The e conits ranGEgMUALNTY and dempotency, can be enforced by using in-
noise uniformly distributed if—0.1,0.1]. (b) True versus predicted values {€fpolation conditions at key points, whereas other methods are
(straight line corresponds to perfect fit). less adaptable. Thus, constrained splines satisfy the first three
requirements we set in the problem of approximation of aggre-
marked with circles. Restrictions(x,0) = f(0,z) = « and gation operators.
f(x,1) = f(1,2) = 1 are imposed. Figs. 5 and 6 illustrate the Disadvantages of this approach are also clear. There is no se-
use of monotone splines in empirical studies of aggregation apantic interpretation of spline coefficients, and the constructed
erators. The data is taken from [70] and represent the empiricadiyerator behaves like a black box. Tensor-product spline re-
determined membership values of 20 objects in the fuzzy setsres many coefficients to be determined, and hence substan-
“metallic object”, “container” and “metallic container”. The ag-tial amount of empirical data (that may not be available). Even
gregation operator that models intersection of the first two set®ugh LSEI method can solve underdetermined systems (less
was constructed based on the data and the boundary conditidais than coefficients), for quality approximation the data is es-
f(0,0) =0andf(1,1) = 1. Itis shown on Fig. 5. Fig. 6 shows sential. Consequently, in case of few data, the previously de-
the relationships between empirical and predicted grades s€ribed parametric approach should be used.

0.9+
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Mpredicted cations. In the same application environment CPOL provides ac-

o cessto clinical practice guidelines tailored for SA HealthPlus. It

* employs multiple methods of active decision support by linking

clinical guidelines with the routine observations from the elec-
tronic medical record. Unsolicited advice is provided “just in
time” without disrupting the GPs workflow. The mechanisms
for doing this include using nonverbal clues, facilitating imple-
mentation of the decision consistent with the advice (and pro-

0l viding critical advice otherwise), structuring data entry forms

. in a way that conveys the advice, and also providing narrative
advice at critical steps [10], [64].

7 Fuzzification of clinical guidelines is an important step in
their electronic implementation, and the problem of selecting, or
approximating, aggregation operators plays a major role in this
context. It is not always clear what kind of logical operations is

. behind “and” and “or” connectives, whether these operators are

* compensatory and what are the importance factors. Experts are
* v ambiguous in answering these questions, and rather than tor-
turing them with knowledge elicitation procedure, we offered

o o2 s o5 o5 1 them a selection of real and dummy cases, where they had to

make a decision. This data was used to fit the aggregation op-

erators (either in parametric or nonparametric form) to experts’
@ decision pattern. We illustrate this process on guidelines from

Mpredicted SA HealthPlus as implemented in CPOL.

‘ The first guideline is for bone density studies with indicators
as discussed earlier (as per Table ). If the weighted sum of the
indicators applicable to a given patient (based on their EPR) is

. more than 5, then the procedure is recommended (CPOL places

o2 ared “I" attention flag by the BDS service as well as describing

the service as “recommended” in its guideline). If the sum is

between 3 and 5, BDS is suggested as an option (and receives

0.8+

0.4+

024

Mobserved

14

oe] a yellow “?” attention flag). As we mentioned earlier, this rule
. corresponds to bounded sum operator
0al st f(x) =min(1, 121 + azxe + azzs + - - - + anzy)

with a; given by importance factors divided by 5. The member-

* ship functions (for individual antecedents) are piecewise linear
and they are given in Table Il. These membership functions
have been chosen for simplicity reasons, however they still ad-
equately describe the corresponding fuzzy sets. More advanced

o otz o o o i methods of membership function estimation from the data are

described in [2], [7], [58], [70].

6.2+ *

Hobserved As the data we took 20 cases, for which three experts (respira-
(®) tory specialists involved in the framing of the guideline for use
Fig. 6. Observed versus predicted membership values. (a) Monotone spineSA HealthPlus) gave their opinion on applicability of BDS.
operator. (b) Min operator. We fitted the coefficients of the operator using DataFit nonlinear
regression software. The vector of resulting coefficients was
VI. CPOL SYSTEM a = (0.3,0.36,0.31,0.25,0,0.02)". It may appear that at least

within the bounded sum model, the “smoker” and “poor phys-

CPOL is an intranet-based medical decision support systéral activity” indicators do not play any major role in doctors’
that offers both solicited and unsolicited advice to a generdcision making. We realize, however, that we used a very small
practitioner (GP) during care planning. Care planning is a deumber of cases, and the data were not evenly spread across its
cision making step in the process ©bordinated Carea trial domain. All the patients participating in the study were either
of which is run by the SA HealthPlus division of the South Aussmokers or exsmokers and, although, we formally accounted
tralian Health Commission. CPOL provides a single coherefatr the time since they quit smoking, it introduced a bias into
source whereby the GP can review a HealthPlus patient’s EPReperts’ opinions. As to the “poor physical activity” indicator,
the context of devising a plan of prospective services and meiiappears that doctors use more sophisticated criteria than just
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TABLE I

MEMBERSHIP FUNCTIONS FORBONE DENSITY STUDY INDICATORS

Indicator Numerical parameter x Membership function Comment
Postmenopaus | Age (years) (x- 45/ 0 if male; is
al female (50-45) | overwritten if
1(x) =10,if x <45 Fhe PM status
1, if x> 50 is known
‘Multiple Number of admissions 0.5,if x=1
hospital . =10ifx=0
admissions #o(¥) 0’1‘ *
1, ifx>1
Low body Body mass index (kg/m?) (20— xy
weight 2
H5(x) =40,if x> 20
L, if x<18
FEV1 <60% FEV1, % of predicted (100 - x)/50
of predicted
M, (x) =10,if x >100
1, if x <50
Poor physical | Walking distance (m) (500 - x)/400
activity
Hs(x) =40,if x > 500
1, if x <100
Smoker Daily packs x years (x), (x—-30)/10
or cigarettes per day (y) ]
and years since quitting (z) | (%) =40,if x <30 ,or
if x is unavailable L if x> 40
luﬁ(y’z) = luéa(y)xﬂﬁb(z) s
(y-10)/20
Mo, (»)=40,if y <10,
1, if y>30
1-(z-5)/10
He (D =19Lif z<5
0, if z>15

the walking distance. The fact that the data does not support th&here are no indicators about the form of aggregation
experts’ opinion on the importance of the last two indicators deperators, and nonparameti:spline approach seems to be
serves further investigation both from decision making and useost appropriate. However, the total number of basis functions

interface perspective.

is 4%, where K is the number of indicators, and hence large

Other guideline examples from CPOL that can be readimounts of empirical data are needed to find the spline coeffi-

fuzzified are

IF Diastolic Blood Pressure
>140 mmHg,
THEN Check BP every visit

Pressure

>90 mmHgOR Systolic Blood

IF BMI <20 OR BMI >30 OR >10% weight loss in 3 months,

THEN Consider Dietician service
IF Total Cholesterol
erides >2,

THEN Consider dietary therapy
IF Received dietary therapy
(TotChol  >5.5 OR (HDL <1 AND TotChol
Triglyzerides >2.3)),

THEN Consider drug therapy.

>4.5 ORLDL >3.5 ORHDL <1 OR Triglyz-

AND after 2 readings
>5) OR(HDL <1 AND

cients. These data can be routinely collected when employing
an on-line health information system such as CPOL, and our
research team intends to develop further empirical models in
this fashion as the system is used further.

VII. CONCLUSION

In absence of set-theoretical criteria, semantical clarity, flex-
ibility and goodness of fit to empirical data become the deci-
sive factors in selecting aggregation operators. Both parametric
and nonparametric regression can be employed to find the func-
tional form of the aggregation operator. Parametric regression
provides better semantical clarity, but is not as flexible and pre-
cise as nonparametric methods. In the case of nonparametric
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regression, multivariate linear least squares splines provide ex4]
cellent flexibility, but may not preserve monotonicity, which is
semantically essential for general aggregation operators. To eH—S ]
force this property, linear constraints on spline coefficients haveie)
to be introduced.

An appropriate choice of basis functions in the space of Iinea[r17]
splines results in an especially simple form of the constraintgis]
that can be used in standard algorithms. The availability o[ |
such algorithms makes the problem of monotone approxim]
mation straightforward. In addition, important properties of
certain classes of aggregation operators can be translated irféd!
interpolation conditions, and therefore easily incorporated i”t?zz]
the algorithm. Thus, splines are not only flexible to model
general aggregation operators, but are also adaptable to mod&il
particular families. [24]

The major application of the proposed methods is seen in ex-
pert and decision support systems where little is known abou#d]
how the criteria (risk factors, indicators, etc.) should be aggre-
gated. Experts in the field can provide their guess about relativige]
importance of such criteria, and their “feeling” about mathemat-
ical properties of aggregation operators (compensatory or acciy)
mulative behavior, or lack of thereof), and can also provide emps]
pirical data by considering various cases themselves. These data
are subsequently used for regression analysis. An example
practical application of our method is the CPOL system, which3o]
incorporates fuzzy versions of several clinical guidelines. [31]
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