Deakin University

File(s) under permanent embargo

Attentional multilabel learning over graphs: a message passing approach

journal contribution
posted on 2022-11-17, 04:25 authored by Kien DoKien Do, Truyen TranTruyen Tran, Thin NguyenThin Nguyen, Svetha VenkateshSvetha Venkatesh
We address a largely open problem of multilabel classification over graphs. Unlike traditional vector input, a graph has rich variable-size substructures which are related to the labels in some ways. We believe that uncovering these relations might hold the key to classification performance and explainability. We introduce Graph Attention model for Multi-Label learning (GAML), a novel graph neural network that can handle this problem effectively. GAML regards labels as auxiliary nodes and models them in conjunction with the input graph. By applying the neural message passing algorithm and attention mechanism to both the label nodes and the input nodes iteratively, GAML can capture the relations between the labels and the input subgraphs at various resolution scales. Moreover, our model can take advantage of explicit label dependencies. It also scales linearly with the number of labels and graph size thanks to our proposed hierarchical attention. We evaluate GAML on an extensive set of experiments with both graph-structured inputs and classical unstructured inputs. The results show that GAML significantly outperforms other competing methods. Importantly, GAML enables intuitive visualizations for better understanding of the label-substructure relations and explanation of the model behaviors.



Machine Learning




1757 - 1781





Publication classification

C1 Refereed article in a scholarly journal