Deakin University
Browse

Automated Method for Detecting Acute Insomnia Using Multi-Night Actigraphy Data

Download (1.38 MB)
Version 2 2024-06-04, 12:11
Version 1 2020-05-08, 13:23
journal contribution
posted on 2024-06-04, 12:11 authored by M Angelova, Chandan KarmakarChandan Karmakar, Ye ZhuYe Zhu, SPA Drummond, J Ellis
In this paper we propose a new machine learning model for classification of nocturnal awakenings in acute insomnia and normal sleep. The model does not require sleep diaries or any other subjective information from the individuals who took part of the study. It is based on nocturnal actigraphy collected from pre-medicated individuals with acute insomnia and normal sleep controls. We have derived dynamical and statistical features from the actigraphy time series data. These features are combined using two machine learning techniques namely Random Forest (RF) and Support Vector Machine (SVM). RF shows better performance (accuracy - 84%) than SVM (73%) in classifying individuals with insomnia from healthy sleepers. The developed model provides a signature of the condition of acute insomnia obtained from actigraphy only and is very promising as a tool to detect the condition in a non-invasive way and without sleep diaries or any other subjective information.

History

Journal

IEEE Access

Volume

8

Pagination

74413-74422

Location

Piscataway, N.J.

Open access

  • Yes

ISSN

2169-3536

eISSN

2169-3536

Language

English

Publication classification

C1 Refereed article in a scholarly journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC