File(s) under permanent embargo
Automatic parameters selection for eigenfaces
journal contribution
posted on 2006-05-01, 00:00 authored by R Tjahyadi, W Liu, Svetha VenkateshSvetha VenkateshIn this paper, we investigate the parameters selection for Eigenfaces. Our focus is on the eigenvectors and threshold selection issues. We will propose a systematic approach in selecting the eigenvectors based on relative errors of the eigenvalues for the covariance matrix. In addition, we have proposed a method for selecting the classification threshold that utilizes the information obtained from the training data set. Experimentation was conducted on two benchmark face databases, ORL and AMP, with results indicating that the proposed automatic eigenvectors and threshold selection methods produce better recognition performance in terms of precision and recall rates. Furthermore, we show that the eigenvector selection method outperforms energy and stretching dimension methods in terms of selected number of eigenvectors and computation cost.