Deakin University
Browse
1/1
2 files

Axial loading and posture cues in contraction of transversus abdominis and multifidus with exercise

Version 3 2024-06-18, 21:03
Version 2 2024-06-13, 16:21
Version 1 2020-06-04, 13:21
journal contribution
posted on 2024-06-18, 21:03 authored by PJ Owen, T Rantalainen, RA Scheuring, DL Belavy
AbstractAstronauts are at increased risk of spine injury. With a view to developing training approaches for the muscles of the spine in microgravity, this study examined the effects of axial loading and postural cues on the contraction of transversus abdominis and lumbar multifidus in supine lying using a novel exercise device (GravityFit). Thirty (18 males and 12 females) endurance-trained runners without a history of spinal pain aged 33–55 years were recruited. Magnetic resonance imaging (MRI) was performed under one rest and five exercise conditions, which involved variations in axial loading and postural cues. Whole volume of the abdominal and lumbar paraspinal muscles was imaged and transversus abdominis thickness and length and multifidus anteroposterior and mediolateral thickness measured. Transversus abdominis contraction was greatest in the ‘stretch tall plus arm extension’ (length, − 15%, P < 0.001; thickness, + 19%, P < 0.001) and ‘stretch tall plus arm extension and thoracic cue’ (length, − 16%, P < 0.001; thickness, + 18%, P < 0.001) conditions. The contraction of multifidus was the greatest in the ‘arm extension and thoracic cue’ (anteroposterior, + 3.0%, P = 0.001; mediolateral, − 4.2%, P < 0.001) and ‘stretch tall plus arm extension and thoracic cue’ (anteroposterior, + 6.0%, P < 0.001; mediolateral, − 2.1%, P = 0.022) conditions. This study provides proof-of-principle for an exercise approach that may be used to facilitate the automatically contraction of the transversus abdominis and multifidus muscles. Axial loading of the body, with or without arm loading, most consistently led to contraction of the transversus abdominis and lumbar multifidus muscles, and regional differences existed in the contraction within the muscles.

History

Journal

Scientific Reports

Volume

10

Article number

ARTN 11218

Pagination

1 - 8

Location

England

Open access

  • Yes

ISSN

2045-2322

eISSN

2045-2322

Language

English

Publication classification

C1 Refereed article in a scholarly journal

Issue

1

Publisher

NATURE PUBLISHING GROUP

Usage metrics

    Research Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC