Deakin University
Browse

File(s) not publicly available

Ballistic limit predictions of non-identical layered targets perforated in ductile hole formation

journal contribution
posted on 2023-02-20, 04:59 authored by R Masri, Shannon RyanShannon Ryan
The ballistic resistance of metallic targets perforated in ductile hole formation can be accurately calculated for monolithic targets, multi-layered targets with air-gaps between plates, and multi-layered targets of identical, in-contact layers via utilisation of the specific cavitation energy concept. Here we present an extension to those models for application to targets with two in-contact layers of varying material type and thickness. We hypothesise that the perforation of the second (bottom,rear,back) layer is not affected by the resistance of the first (upper,top,front) layer, which has already been perforated. Rather, the second layer acts as an independent monolithic target. Using the ballistic equivalence concept, which has been validated by a comprehensive numerical study with abrasion resistant steel targets (Hardox 400), high-strength aluminium alloy targets (AA6061-T651) and annealed aluminium alloy targets (AA6070-O) perforated by rigid projectiles, we develop a heuristic model in which the second layer is replaced by a ballistically-equivalent layer of material identical to that of the first layer. Utilising finite element simulations, we demonstrate the accuracy of the suggested model for double-layered targets consisting of a Hardox 400 steel layer and a AA6070-O aluminium layer, perforated by a hardened tool steel projectile and find it to be high enough for practical use over a wide range of target configurations.

History

Journal

International Journal of Impact Engineering

Volume

171

Article number

ARTN 104391

ISSN

0734-743X

eISSN

1879-3509

Language

English

Publication classification

C1 Refereed article in a scholarly journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD