Deakin University
Browse

File(s) not publicly available

Behavior of magnesium in Hank's solution aimed to trabecular pattern of natural bone

Version 2 2024-06-17, 07:04
Version 1 2014-10-28, 08:59
journal contribution
posted on 2024-06-17, 07:04 authored by H Kuwahara, N Mazaki, M Mabuchi, C Wen, T Aizawa
An ideal artificial bone is expected to grow together with other natural bones with aid of osteoblast cells and to fade out into other natural bones at the same rate of restructuring natural bone. Magnesium is thought to be one of candidate materials, since it has a potential to enhance natural bone growth and to homogenize the implanted artificial bodies with natural bone. In the present study, we are concerned with the formation of trabecular pattern in the natural bone to consider how to reconstruct this pattan in the artificial bone made from magnesium. For that purpose, a series of experiments were perfonned to observe the chemical behavior of dipped magnesium plate and cellular magnesium in Hank's solution. A magnesium specimen is annealed at 773 - 803 K for various periods in an atmosphere to homogenize its microstructure. Mass change of magnesium is estimated by immersing it in Hank's solution. It is well known that magnesium is easily corroded by chlorine ion. Both x-ray diffraction and energy dispersed x-ray analyses were carried out in order to identify a reaction product and its chemical composition. Mass of a magnesium specimen, which was annealed at 803 K for 32.4 ks or 14.4 ks, increases after immersing it into Hank's solution for 4.5 18 Ms (1255 h). Furthermore, the cellular magnesium, which was annealed at 803 K for 1.8 ks, fanned a reacted layer with around 80 μ in thickness and it contained Mg, Ca, P, and a little bit of CI.

History

Journal

Materials science forum

Volume

419-422

Season

Magnesium Alloys 2003

Pagination

1007-1012

Location

Lausanne, Switzerland

ISSN

0255-5476

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2003, Trans Tech Publications Ltd.

Publisher

Trans Tech Publications Ltd

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC