Version 2 2024-06-04, 14:25Version 2 2024-06-04, 14:25
Version 1 2018-02-12, 15:41Version 1 2018-02-12, 15:41
journal contribution
posted on 2024-06-04, 14:25authored byLeo ZhangLeo Zhang, KW Wong, Y Zhang, J Zhou
Some pioneering works have investigated embedding cryptographic properties in compressive sampling (CS) in a way similar to one-time pad symmetric cipher. This paper tackles the problem of constructing a CS-based symmetric cipher under the key reuse circumstance, i.e., the cipher is resistant to common attacks even when a fixed measurement matrix is used multiple times. To this end, we suggest a bi-level protected CS (BLP-CS) model which makes use of the advantage of measurement matrix construction without restricted isometry property (RIP). Specifically, two kinds of artificial basis mismatch techniques are investigated to construct key-related sparsifying bases. It is demonstrated that the encoding process of BLP-CS is simply a random linear projection, which is the same as the basic CS model. However, decoding the linear measurements requires knowledge of both the key-dependent sensing matrix and its sparsifying basis. The proposed model is exemplified by sampling images as a joint data acquisition and protection layer for resource-limited wireless sensors. Simulation results and numerical analyses have justified that the new model can be applied in circumstances where the measurement matrix can be reused.