A new process of joining tubes from different materials to a bimetallic tube based on a combination of large shear and high hydrostatic pressure is proposed. It results in improved mechanical locking of surface asperities, along with enhanced diffusivity owing to the ultrafine-grained microstructure produced. This is augmented by a temperature increase due to heat release associated with mechanical work. Electron microscopy characterization of the interface and the adjacent regions supports the hypothesis of enhanced interdiffusion.