Bisphenol A exposure under metabolic stress induces accelerated cellular senescence in vivo in a p53 independent manner
journal contribution
posted on 2019-11-01, 00:00 authored by A Soundararajan, P Yoganantharajah, S Raghavan, V Mohan, M Balasubramanyam, Y Gibert© 2019 Elsevier B.V. Senescence is an irreversible process that is a characteristic of age-associated disease like Type 2 diabetes (T2D). Bisphenol-A (BPA), one of the most common endocrine disruptor chemicals, received special attention in the development of insulin resistance and T2D. To understand the role played by BPA in cellular senescence under metabolic stress, zebrafish embryos were exposed to BPA in the absence and presence of hyperglycaemia. Transcriptional levels of the senescence markers p15, p53, Rb1 and β-galactosidase were increased when BPA was combined with metabolic stress. In addition, zebrafish embryos that were exposed to combination of hyperglycaemia and BPA exhibited increased levels of apoptosis. However, cellular senescence remained induced by a combination of hyperglycaemia and BPA exposure even in the absence of a translated p53 protein suggesting that senescence is primarily independent of it but dependent on the p15-Rb1 pathway under our experimental conditions. To confirm that our results hold true in adult mammalian tissues, we validated our embryonic experiments in an adult mammalian metabolic model of skeletal muscle cells. Our work reveals a novel and unique converging role of senescence and apoptosis axis contributing to glucose dyshomeostasis. Thus, we conclude that BPA exposure can exacerbate existing metabolic stress to increase cellular senescence that leads to aggravation of disease phenotype in age-associated diseases like type 2 diabetes.
History
Journal
Science of the total environmentVolume
689Pagination
1201-1211Location
Amsterdam, The NetherlandsPublisher DOI
ISSN
0048-9697eISSN
1879-1026Language
engPublication classification
C1 Refereed article in a scholarly journalCopyright notice
2019, Elsevier B.V.Publisher
ElsevierUsage metrics
Categories
No categories selectedLicence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC