Deakin University
Browse

File(s) under permanent embargo

Characterization of large surface area polymer monoliths and their utility for rapid, selective solid phase extraction for improved sample clean up

journal contribution
posted on 2015-09-04, 00:00 authored by Esme Candish, Hans-Jürgen Wirth, Andrew A Gooley, Robert ShellieRobert Shellie, Emily F Hilder
While polymer monoliths are widely described for solid phase extraction (SPE), appropriate characterization is rarely provided to unravel the links between physical characteristics and observed advantages and disadvantages. Two known approaches to fabricate large surface area polymer monoliths with a bimodal pore structure were investigated. The first incorporated a high percentage of divinyl benzene (PDVB) and the second explored hypercrosslinking of pre-formed monoliths. Adsorption of probe analytes; anisole, benzoic acid, cinnamic acid, ibuprofen and cortisone were investigated using frontal analysis and the SPE performance was compared with particulate adsorbents. Frontal analysis of anisole described maximum adsorption capacities of 164mgg(-1) and 298mgg(-1) for hypercrosslinked and PDVB adsorbents, respectively. The solvated state specific surface area was calculated to be 341 and 518m(2)g(-1) respectively. BET revealed a hypercrosslinked surface area of 817m(2)g(-1), 2.5 times greater than in the solvated state. The PDVB BET surface area was 531m(2)g(-1), similar to the solvated state. Micropores of 1nm provided the enhanced surface area for hypercrosslinked adsorbents. PDVB displayed a pore size distribution of 1-6nm. Frontal analysis demonstrated the micropores present size exclusion for the larger probes. Recovery of anisole was determined by SPE using 0.4 and 1.0mLmin(-1). Recovery for PDVB remained constant at 90%±0.103 regardless of the extraction flow rate suggesting extraction performance is independent of flow rate. A more efficient sample purification of saccharin in urine was yielded by PDVB due to selective permeation of the small pores.

History

Journal

Journal of Chromatography A

Volume

1410

Pagination

9 - 18

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0021-9673

eISSN

1873-3778

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2015, Elsevier