Deakin University
Browse
DOCUMENT
trewin-coldwaterimmersion-2019.pdf (2.56 MB)
DOCUMENT
trewin-coldwaterimmersion-post-2019.pdf (3.43 MB)
1/0
2 files

Cold water immersion attenuates anabolic signaling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training

Version 2 2024-06-04, 10:23
Version 1 2019-09-18, 19:49
journal contribution
posted on 2024-06-04, 10:23 authored by Jackson FyfeJackson Fyfe, JR Broatch, AJ Trewin, ED Hanson, CK Argus, Andrew GarnhamAndrew Garnham, SL Halson, RC Polman, DJ Bishop, AC Petersen
We determined the effects of cold water immersion (CWI) on long-term adaptations and post-exercise molecular responses in skeletal muscle before and after resistance training. Sixteen men (22.9 ± 4.6 y; 85.1 ± 17.9 kg; mean ± SD) performed resistance training (3 day/wk) for 7 wk, with each session followed by either CWI [15 min at 10°C, CWI (COLD) group, n = 8] or passive recovery (15 min at 23°C, control group, n = 8). Exercise performance [one-repetition maximum (1-RM) leg press and bench press, countermovement jump, squat jump, and ballistic push-up], body composition (dual X-ray absorptiometry), and post-exercise (i.e., +1 and +48 h) molecular responses were assessed before and after training. Improvements in 1-RM leg press were similar between groups [130 ± 69 kg, pooled effect size (ES): 1.53 ± 90% confidence interval (CI) 0.49], whereas increases in type II muscle fiber cross-sectional area were attenuated with CWI (−1,959 ± 1,675 µM2 ; ES: −1.37 ± 0.99). Post-exercise mechanistic target of rapamycin complex 1 signaling (rps6 phosphorylation) was blunted for COLD at post-training (POST) +1 h (−0.4-fold, ES: −0.69 ± 0.86) and POST +48 h (−0.2-fold, ES: −1.33 ± 0.82), whereas basal protein degradation markers (FOX-O1 protein content) were increased (1.3-fold, ES: 2.17 ± 2.22). Training-induced increases in heat shock protein (HSP) 27 protein content were attenuated for COLD (−0.8-fold, ES: −0.94 ± 0.82), which also reduced total HSP72 protein content (−0.7-fold, ES: −0.79 ± 0.57). CWI blunted resistance training-induced muscle fiber hypertrophy, but not maximal strength, potentially via reduced skeletal muscle protein anabolism and increased catabolism. Post-exercise CWI should therefore be avoided if muscle hypertrophy is desired. NEW & NOTEWORTHY This study adds to existing evidence that post-exercise cold water immersion attenuates muscle fiber growth with resistance training, which is potentially mediated by attenuated post-exercise increases in markers of skeletal muscle anabolism coupled with increased catabolism and suggests that blunted muscle fiber growth with cold water immersion does not necessarily translate to impaired strength development.

History

Journal

Journal of Applied Physiology

Volume

127

Pagination

1403-1418

Location

United States

Open access

  • Yes

ISSN

8750-7587

eISSN

1522-1601

Language

English

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

5

Publisher

AMER PHYSIOLOGICAL SOC