Deakin University
Browse
gentle-collagengene-2003.pdf (216.34 kB)

Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia

Download (216.34 kB)
journal contribution
posted on 2003-05-09, 00:00 authored by Alex GentleAlex Gentle, Y Liu, J E Martin, G L Conti, N A McBrien
The development of high myopia is associated with reduced scleral collagen accumulation, scleral thinning, and loss of scleral tissue, in both humans and animal models. Reduced collagen fibril diameter is also observed in the sclera of eyes with high myopia. The present study investigated aspects of scleral collagen synthesis and degradation, in a mammalian model of high myopia, to elucidate the factors underlying scleral changes. General synthesis and degradation of scleral collagen was investigated in monocularly deprived tree shrews, through the in vivo administration of [(3)H]proline and subsequent assay of scleral tissue for [(3)H]collagen. In addition, PCR enriched cDNA, produced from tree shrew scleral mRNA, was used to synthesize probes for hybridization to custom gene arrays consisting of partial sequences for 11 collagen subtypes. Finally, real-time reverse transcriptase-PCR was employed to investigate collagen type I, III, and V mRNA expression in the sclera of myopic, contralateral control, and normal tree shrew eyes. Scleral [(3)H]proline incorporation was reduced at the posterior pole of myopic eyes following 5 days of monocular deprivation (-36 +/- 4%), whereas [(3)H]proline content was similar in treated and control eyes before myopia induction (-1 +/- 8%) but was reduced in myopic eyes following 5 (-8 +/- 2%), 12 (-15 +/- 4%), and 24 (-10 +/- 4%) days of myopia induction. The majority of the collagens investigated were found to be expressed in the sclera, with 11 subtypes being identified. Collagen type I mRNA expression was reduced in the sclera of myopic eyes (-20 +/- 7%), however, collagen type III (+2 +/- 9%) and type V (-1 +/- 6%) expression was unchanged relative to control, resulting in a net increase in the ratio of expression of collagen type III/type I and collagen type V/type I (22 and 25%, respectively). These results show that reduced scleral collagen accumulation in myopic eyes is a result of both decreased collagen synthesis and accelerated collagen degradation. Furthermore, changes in collagen synthesis are driven by reduced type I collagen production. Short term increases in the ratio of newly synthesized collagen type III/type I and type V/type I are likely to be important in the increasing frequency of small diameter scleral collagen fibrils observed in high myopia and may be important in the subsequent development of posterior staphyloma in humans with pathological myopia.

History

Journal

Journal of biological chemistry

Volume

278

Issue

19

Pagination

16587 - 16594

Publisher

American Society for Biochemistry and Molecular Biology

Location

Bethesda, Md.

ISSN

0021-9258

eISSN

1083-351X

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2003, ASBMB

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC