Deakin University
Browse

File(s) under permanent embargo

Constrained NMF-based semi-supervised learning for social media spammer detection

journal contribution
posted on 2017-06-01, 00:00 authored by D Yu, N Chen, Frank JiangFrank Jiang, B Fu, A Qin
© 2017 Elsevier B.V. Within the past few years, social media platforms such as Facebook, Twitter, and Sina Weibo, have gradually become important channels for information dissemination and communication. However, in the meantime, these platforms are prone to be potentially attacked by spammers, who usually propagate disgusted information such as phishing URLs, false news, and even pornography to other users. Despite rapid increase of social media spammers, the traditional spammer detection methods become less effective. In this paper, we present a novel semi-supervised social media spammer detection approach, making full use of the message content and user behavior as well as the social relation information. First, we adapt the original constrained NMF-based semi-supervised learning (CNMF) algorithm, nonnegative matrix factorization (NMF) by imposing a label information constrain and sparseness constrain. Second, we present a novel CNMF-based integral framework for social media spammer detection by implementing the collaborative factorization on the message content matrix and the user behavior and social relation information matrix. Moreover, we explore the iterative update rule (IUR) and optimization algorithm for the spammer detection model. In addition, its corresponding convergence is also proven. Extensive experiments are conducted on the real-world dataset from Sina Weibo, the experiment results demonstrate that our proposed model performs significantly better than the conventionally applied supervised classifiers for the spammer detection.

History

Journal

Knowledge-Based Systems

Volume

125

Pagination

64 - 73

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0950-7051

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC