This paper examines the practical construction of k-Lipschitz triangular norms and conorms from empirical data. We apply a characterization of such functions based on k-convex additive generators and translate k-convexity of piecewise linear strictly decreasing functions into a simple set of linear inequalities on their coefficients. This is the basis of a simple linear spline-fitting algorithm, which guarantees k-Lipschitz property of the resulting triangular norms and conorms.
2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Publication classification
C1 Refereed article in a scholarly journal; C Journal article