Version 2 2024-06-06, 09:20Version 2 2024-06-06, 09:20
Version 1 2018-09-10, 14:12Version 1 2018-09-10, 14:12
journal contribution
posted on 2024-06-06, 09:20authored byAMM Sequeira, JP Rodríguez, VM Eguíluz, R Harcourt, M Hindell, DW Sims, CM Duarte, DP Costa, J Fernández-Gracia, LC Ferreira, Graeme HaysGraeme Hays, MR Heupel, MG Meekan, A Aven, F Bailleul, AMM Baylis, ML Berumen, CD Braun, J Burns, MJ Caley, R Campbell, RH Carmichael, E Clua, LD Einoder, A Friedlaender, ME Goebel, SD Goldsworthy, C Guinet, J Gunn, D Hamer, N Hammerschlag, M Hammill, LA Hückstädt, NE Humphries, MA Lea, A Lowther, A Mackay, E McHuron, J McKenzie, L McLeay, CR McMahon, K Mengersen, MMC Muelbert, AM Pagano, B Page, N Queiroz, PW Robinson, SA Shaffer, M Shivji, GB Skomal, SR Thorrold, S Villegas-Amtmann, M Weise, R Wells, B Wetherbee, A Wiebkin, B Wienecke, M Thums
Significance
Understanding the key drivers of animal movement is crucial to assist in mitigating adverse impacts of anthropogenic activities on marine megafauna. We found that movement patterns of marine megafauna are mostly independent of their evolutionary histories, differing significantly from patterns for terrestrial animals. We detected a remarkable convergence in the distribution of speed and turning angles across organisms ranging from whales to turtles (epitome for the slowest animals on land but not at sea). Marine megafauna show a prevalence of movement patterns dominated by search behavior in coastal habitats compared with more directed, ballistic movement patterns when the animals move across the open ocean. The habitats through which they move will therefore need to be considered for effective conservation.
History
Journal
Proceedings of the National Academy of Sciences of the United States of America